...
首页> 外文期刊>Geobiology >Timing of morphological and ecological innovations in the cyanobacteria - a key to understanding the rise in atmospheric oxygen
【24h】

Timing of morphological and ecological innovations in the cyanobacteria - a key to understanding the rise in atmospheric oxygen

机译:蓝细菌形态和生态创新的时机-了解大气中氧气含量上升的关键

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

When cyanobacteria originated and diversified, and what their ancient traits were, remain critical unresolved problems. Here, we used a phylogenomic approach to construct a well-resolved 'core' cyanobacterial tree. The branching positions of four lineages (Thermosynechococcus elongatus, Synechococcus elongatus, Synechococcus PCC 7335 and Acaryochloris marina) were problematic, probably due to long branch attraction artifacts. A consensus genomic tree was used to study trait evolution using ancestral state reconstruction (ASR). The early cyanobacteria were probably unicellular, freshwater, had small cell diameters, and lacked the traits to form thick microbial mats. Relaxed molecular clock analyses suggested that early cyanobacterial lineages were restricted to freshwater ecosystems until at least 2.4 Ga, before diversifying into coastal brackish and marine environments. The resultant increases in niche space and nutrient availability, and consequent sedimentation of organic carbon into the deep oceans, would have generated large pulses of oxygen into the biosphere, possibly explaining why oxygen rose so rapidly. Rapid atmospheric oxidation could have destroyed the methane-driven greenhouse with simultaneous drawdown in pCO, precipitating 'Snowball Earth' conditions. The traits associated with the formation of thick, laminated microbial mats (large cell diameters, filamentous growth, sheaths, motility and nitrogen fixation) were not seen until after diversification of the LPP, SPM and PNT clades, after 2.32 Ga. The appearance of these traits overlaps with a global carbon isotopic excursion between 2.2 and 2.1 Ga. Thus, a massive re-ordering of biogeochemical cycles caused by the appearance of complex laminated microbial communities in marine environments may have caused this excursion. Finally, we show that ASR may provide an explanation for why cyanobacterial microfossils have not been observed until after 2.0 Ga, and make suggestions for how future paleobiological searches for early cyanobacteria might proceed. In summary, key evolutionary events in the microbial world may have triggered some of the key geologic upheavals on the Paleoproterozoic Earth.
机译:蓝细菌的起源和多样化及其古老特征是什么,仍然是尚未解决的关键问题。在这里,我们使用了一种植物遗传学方法来构建一个解析良好的“核心”蓝细菌树。四个谱系(Thermosynechococcus elongatus,Synchococcus elongatus,Synechococcus PCC 7335和Acaryochloris marina)的分支位置存在问题,可能是由于长的分支吸引伪像所致。共有基因组树用于使用祖先状态重建(ASR)研究性状进化。早期的蓝细菌可能是单细胞的淡水,细胞直径较小,并且缺乏形成厚厚的微生物垫的特征。轻松的分子钟分析表明,早期的蓝细菌谱系仅限于淡水生态系统,直到至少2.4 Ga,然后才向沿海咸淡水和海洋环境发展。由此导致的生态位空间和养分利用率的增加,以及随之而来的有机碳沉积到深海中,将在生物圈中产生大量的氧气脉冲,这可能解释了为什么氧气如此迅速地上升。快速的大气氧化可能破坏了甲烷驱动的温室,同时降低了pCO,加剧了“雪球地球”的状况。直到LPP,SPM和PNT进化枝多样化后,在2.32 Ga之后才出现与厚的层状微生物垫形成有关的特征(大细胞直径,丝状生长,鞘,运动性和固氮作用)。性状与2.2和2.1 Ga之间的全球碳同位素偏移重叠。因此,由海洋环境中复杂的层压微生物群落的出现引起的生物地球化学循环的大量重新排序可能导致了这种偏移。最后,我们表明,ASR可以解释为什么直到2.0 Ga之后才观察到蓝藻微化石,并为将来如何进行早期蓝藻细菌的古生物学搜索提出建议。总之,微生物世界中的关键进化事件可能引发了古元古代地球上的一些关键地质动荡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号