...
首页> 外文期刊>Geobiology >Coevolution of metal availability and nitrogen assimilation in cyanobacteria and algae
【24h】

Coevolution of metal availability and nitrogen assimilation in cyanobacteria and algae

机译:蓝细菌和藻类中金属有效性和氮同化的共同演化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Marine primary producers adapted over eons to the changing chemistry of the oceans. Because a number of metalloenzymes are necessary for N assimilation, changes in the availability of transition metals posed a particular challenge to the supply of this critical nutrient that regulates marine biomass and productivity. Integrating recently developed geochemical, biochemical, and genetic evidence, we infer that the use of metals in N assimilation - particularly Fe and Mo - can be understood in terms of the history of metal availability through time. Anoxic, Fe-rich Archean oceans were conducive to the evolution of Fe-using enzymes that assimilate abiogenic [graphic removed] and [graphic removed] The N demands of an expanding biosphere were satisfied by the evolution of biological N fixation, possibly utilizing only Fe. Trace O in late Archean environments, and the eventual 'Great Oxidation Event'c. 2.3 Ga, mobilized metals such as Mo, enabling the evolution of Mo (or V)-based N fixation and the Mo-dependent enzymes for [graphic removed] assimilation and denitrification by prokaryotes. However, the subsequent onset of deep-sea euxinia, an increasingly-accepted idea, may have kept ocean Mo inventories low and depressed Fe, limiting the rate of N fixation and the supply of fixed N. Eukaryotic ecosystems may have been particularly disadvantaged by N scarcity and the high Mo requirement of eukaryotic [graphic removed] assimilation. Thorough ocean oxygenation in the Neoproterozoic led to Mo-rich oceans, possibly contributing to the proliferation of eukaryotes and thus the Cambrian explosion of metazoan life. These ideas can be tested by more intensive study of the metal requirements in N assimilation and the biological strategies for metal uptake, regulation, and storage.
机译:海洋初级生产者适应了不断变化的海洋化学。因为许多金属酶对于氮的吸收是必需的,所以过渡金属可用性的变化对调节海洋生物量和生产力的关键营养素的供应提出了特殊的挑战。综合最近开发的地球化学,生物化学和遗传证据,我们推断在金属同化中使用金属-特别是铁和钼-可以理解为金属随时间变化的历史。缺铁,富铁的太古代海洋有利于利用Fe的酶的进化,这些酶吸收了生物成因的[去除图形]和[去除图形]。生物固氮的演变满足了扩展的生物圈对氮的需求,可能只利用了Fe 。在太古宙晚期环境中追踪O,并最终发生“大氧化事件” c。 2.3 Ga,诸如Mo之类的动员金属,能够发展出基于Mo(或V)的N固定和原核生物用于[图形去除]同化和反硝化的Mo依赖性酶。然而,随后逐渐流行的深海游氧藻可能使海洋钼库存保持在低水平并降低了铁的含量,限制了固氮率和固定氮的供应。真核生物生态系统可能特别受到N的不利影响。缺乏和真核生物[图形去除]同化的高Mo需求。新元古代彻底的海洋氧合作用导致了Mo丰富的海洋,这可能有助于真核生物的增殖,从而导致后生生物的寒武纪爆发。通过更深入地研究氮同化中的金属需求以及金属吸收,调节和储存的生物学策略,可以检验这些想法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号