首页> 外文期刊>Genome research >Zygotes segregate entire parental genomes in distinct blastomere lineages causing cleavage-stage chimerism and mixoploidy
【24h】

Zygotes segregate entire parental genomes in distinct blastomere lineages causing cleavage-stage chimerism and mixoploidy

机译:合子将整个亲本基因组分离成不同的卵裂球谱系,从而导致卵裂期嵌合和混合倍性

获取原文
获取原文并翻译 | 示例
           

摘要

Dramatic genome dynamics, such as chromosome instability, contribute to the remarkable genomic heterogeneity among the blastomeres comprising a single embryo during human preimplantation development. This heterogeneity, when compatible with life, manifests as constitutional mosaicism, chimerism, and mixoploidy in live-born individuals. Chimerism and mixoploidy are defined by the presence of cell lineages with different parental genomes or different ploidy states in a single individual, respectively. Our knowledge of their mechanistic origin results from indirect observations, often when the cell lineages have been subject to rigorous selective pressure during development. Here, we applied haplarithmisis to infer the haplotypes and the copy number of parental genomes in 116 single blastomeres comprising entire preimplantation bovine embryos (n = 23) following in vitro fertilization. We not only demonstrate that chromosome instability is conserved between bovine and human cleavage embryos, but we also discovered that zygotes can spontaneously segregate entire parental genomes into different cell lineages during the first post-zygotic cleavage division. Parental genome segregation was not exclusively triggered by abnormal fertilizations leading to triploid zygotes, but also normally fertilized zygotes can spontaneously segregate entire parental genomes into different cell lineages during cleavage of the zygote. We coin the term "heterogoneic division" to indicate the events leading to noncanonical zygotic cytokinesis, segregating the parental genomes into distinct cell lineages. Persistence of those cell lines during development is a likely cause of chimerism and mixoploidy in mammals.
机译:剧烈的基因组动力学,例如染色体不稳定性,在人类植入前的发育过程中,导致单个胚胎卵裂球的基因组异质性显着。当与生活相容时,这种异质性在活产个体中表现为体质镶嵌,嵌合和混合倍性。嵌合和混合倍性分别由单个个体中具有不同亲本基因组或不同倍性状态的细胞谱系定义。我们对它们的机制起源的了解是通过间接观察得出的,通常是当细胞谱系在发育过程中受到严格的选择性压力时。在这里,我们应用了拟除虫作用来推断体外受精后组成整个植入前牛胚胎(n = 23)的116个单卵裂球的单倍型和亲本基因组的拷贝数。我们不仅证明了牛和人类卵裂胚胎之间的染色体不稳定性是保守的,而且我们还发现受精卵可以在合子后卵裂的第一个分裂过程中自发地将整个亲本基因组分离为不同的细胞谱系。导致三倍体合子的异常受精并不仅触发父母基因组的分离,而且正常受精的合子还可以在分裂合子的过程中自发地将整个父母基因组分离成不同的细胞谱系。我们创造了“异源分裂”一词来表示导致非典型合子胞质分裂的事件,将亲本基因组分离为不同的细胞谱系。这些细胞系在发育过程中的持续存在可能是哺乳动物嵌合和混合倍性的原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号