...
首页> 外文期刊>International review of cell and molecular biology >Giant siliceous spicules from the deep-sea glass sponge Monorhaphis chuni.
【24h】

Giant siliceous spicules from the deep-sea glass sponge Monorhaphis chuni.

机译:深海玻璃海绵Monorhaphis chuni的巨型硅质针。

获取原文
获取原文并翻译 | 示例
           

摘要

Only 13 years after realizing, during a repair of a telegraph cable pulled out from the deep sea, that the depth of the ocean is plentifully populated with a highly diverse fauna and flora, the Challenger expedition (1873-1876) treasured up a rich collection of vitreous sponges (Hexactinellida). They had been described by Schulze and represent the phylogenetically oldest class of siliceous sponges (phylum Porifera); they are eye-catching because of their distinct body plan, which relies on a filigree skeleton. It is constructed by an array of morphologically determined elements, the spicules. Soon after, during the German Deep Sea Expedition "Valdivia" (1898-1899), Schulze could describe the largest siliceous hexactinellid sponge on Earth, the up to 3-m high Monorhaphis chuni, which develops the equally largest bio-silica structure, the giant basal spicules (3 mx10 mm). Using these spicules as a model, basic knowledge on the morphology, formation, and development of the skeletal elements could be achieved. They are formed by a proteinaceous scaffold (composed of a 27-kDa protein), which mediates the formation of the siliceous lamellae, into which the proteins are encased. The high number of 800 of 5-10 microm thick lamellae is concentrically arranged around the axial canal. The silica matrix is composed of almost pure silicon oxide, providing it with unusually optophysical properties, which are superior to those of man-made waveguides. Experiments might suggest that the spicules function in vivo as a nonocular photoreception system. In addition, the spicules have exceptional mechanical properties, combining mechanical stability with strength and stiffness. Like demosponges, also the hexactinellids synthesize their silica enzymatically, via the enzyme silicatein (27-kDa protein). It is suggested that these basic insights will surely contribute to a further applied utilization and exploration of silica in bio-material/biomedical science.
机译:在意识到从深海拔出的电报电缆的修理过程中,仅13年后,挑战者远征队(1873-1876)便将丰富的收藏品藏在了海洋深处,那里的动植物种类繁多。玻璃海绵(Hexactinellida)。它们已经由舒尔茨(Schulze)进行了描述,代表了系统发育最古老的硅质海绵类(porifera)。它们之所以引人注目,是因为它们独特的身体计划依赖于花丝骨架。它是由一系列形态确定的元素(针状体)构成的。不久之后,在德国深海探险“瓦尔迪维亚”(Valdivia)(1898-1899年)中,舒尔茨描述了地球上最大的硅六倍体海绵,高达3 m高的Monorhaphis chuni,形成了同样最大的生物二氧化硅结构。巨大的基底针(3 mx10毫米)。使用这些针刺作为模型,可以获得关于骨骼元素的形态,形成和发育的基础知识。它们由蛋白质支架(由27 kDa的蛋白质组成)形成,该蛋白质支架介导将蛋白质包裹在其中的硅质薄片的形成。大约800个5-10微米厚的薄片围绕着轴向管同心排列。二氧化硅基质由几乎纯的氧化硅组成,为其提供了异常的光物理性能,优于人造波导。实验可能表明,针头在体内起非眼光接收系统的作用。此外,这些针具有卓越的机械性能,结合了机械稳定性,强度和刚度。像脱脂海绵一样,十六碳烯化合物也通过硅酸酶(27-kDa蛋白)酶促地合成了二氧化硅。建议这些基本见解必将有助于在生物材料/生物医学领域进一步应用二氧化硅的应用和探索。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号