首页> 外文期刊>Geoderma: An International Journal of Soil Science >Contributions of matric and osmotic potentials to the unfrozen water content of frozen soils
【24h】

Contributions of matric and osmotic potentials to the unfrozen water content of frozen soils

机译:基质和渗透势对冷冻土壤未冻结水含量的贡献

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Recent reports show that biogeochemical processes continue when the soil is frozen, but are limited by water availability. However, there is little knowledge about the interactive effects of soil and environmental variables on amounts of unfrozen water in frozen soils. The aims of this study were to determine the contributions of matric and osmotic potentials to the unfrozen water content of frozen soil. We determined the effects of matric and osmotic potential on unfrozen water contents of frozen mineral soil fractions (ranging from coarse sand to fine silt) at -7 degrees C, and estimated the contributions of these potentials to liquid water contents in samples from organic surface layers of boreal soils frozen at -4 degrees C. In the mineral soil fractions the unfrozen water contents appeared to be governed solely by the osmotic potential, but in the humus layers of the sampled boreal soils both the osmotic and matric potentials control unfrozen water content, with osmotic potential contributing 20 to 69% of the total water potential. We also determined pore size equivalents, where unfrozen water resides at -4 degrees C, and found a strong correlation between these equivalents and microbial CO2 production. The larger the pores in which the unfrozen water is found the larger the microbial activity that can be sustained. The osmotic potential may therefore be a key determinant of unfrozen water and carbon dynamics in frozen soil. (C) 2008 Elsevier B.V. All rights reserved.
机译:最近的报告表明,土壤冻结后,生物地球化学过程仍在继续,但受到水的利用的限制。但是,关于土壤和环境变量对冷冻土壤中未冻结水量的相互作用的影响知之甚少。这项研究的目的是确定基质和渗透势对冷冻土壤未冻结水含量的影响。我们确定了基质和渗透势对-7摄氏度下冷冻矿质土壤组分(从粗砂到细粉砂土)的未冻结水分含量的影响,并估计了这些潜力对有机表层样品中液态水分含量的贡献在-4摄氏度下冻结的北方土壤。在矿物土壤中,未冻结的水分似乎仅由渗透势控制,但在采样的北方土壤的腐殖质层中,渗透势和基质势均控制了未冻结的水分,渗透势占总水势的20%至69%。我们还确定了当量冻结水在-4摄氏度时的孔径当量,并发现这些当量与微生物CO2产生强烈相关。发现未冻结的水的孔越大,可以维持的微生物活性就越大。因此,渗透势可能是冻结土壤中未冻结水和碳动态的关键决定因素。 (C)2008 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号