首页> 外文期刊>Geoderma: An International Journal of Soil Science >Fitting litter decomposition datasets to mathematical curves: Towards a generalised exponential approach
【24h】

Fitting litter decomposition datasets to mathematical curves: Towards a generalised exponential approach

机译:将凋落物分解数据集拟合到数学曲线:迈向广义指数方法

获取原文
获取原文并翻译 | 示例
           

摘要

The use of exponential functions to fit decomposition datasets is common in scientific literature. Olson's exponential equation (X-t = X-0 e(-kt)) is widely used, but when strong curvatures are observed, the decomposing organic matter is commonly split into two compartments (Labile and Recalcitrant), thus obtaining double-exponential equations that often provide a good fit. Nevertheless, to correlate the so-calculated pools with quantifiable organic fractions is often very difficult, if not impossible. This suggests that even though these equations fit the experimental data well, they do not necessarily reflect what really happens in the decomposition process. The alternative is to apply models in which the organic matter, instead of being split into labile and recalcitrant compartments, is taken as a single pool whose decomposition rate is not constant.Here we propose a general approach, which considers a single organic compartment. While the original exponential function that fits the basic equation is dX/dt = -kdt, here we substitute the constant k by a function, f (t), i.e. the decomposition rate is assumed to vary with time. Whatever function we choose, the remaining organic matter at time t is:X-t = X-0 . e-integral(t)(0)f(t)dtand thus the problem being addressed is how to integrate the function that describes the change in the decomposition rate. In this paper we study four possible dynamics for such a change: ( I I an exponential decay, (2) a wave-form change, simulating seasonal rhythms, (3) a sigmoidal increase or decrease, and (4) a rational-type dynamics, involving an increase in the initial phase, followed by a gradual decrease. For each one, the integrated form is calculated, and some practical examples are given. Given its flexibility, our approach allows a good fit for a wide number of datasets, including those that well fit a single-exponential function, the classic Olson's function strictly being a specific case of the general equation we suggest.
机译:在科学文献中普遍使用指数函数来拟合分解数据集。 Olson的指数方程式(Xt = X-0 e(-kt))被广泛使用,但是当观察到强曲率时,分解的有机物通常分为两个部分(不稳定和难分解的),从而获得了经常使用的双指数方程式。提供良好的契合度。然而,将如此计算的库与可量化的有机成分关联起来通常非常困难,即使不是不可能的话。这表明,即使这些方程式非常适合实验数据,也不一定反映分解过程中实际发生的情况。另一种方法是应用模型,其中有机物不是分解为不稳定的和顽固的隔室,而是被视为分解速率不是恒定的单个池。在此,我们提出了一种考虑单个有机隔室的通用方法。尽管适合基本方程的原始指数函数为dX / dt = -kdt,但此处我们用函数f(t)代替常数k,即假定分解率随时间变化。无论我们选择什么函数,在时间t时剩余的有机物都是:X-t = X-0。 e-integral(t)(0)f(t)dt,因此要解决的问题是如何集成描述分解速率变化的函数。在本文中,我们研究了这种变化的四种可能的动力学:( II是指数衰减,(2)波形变化,模拟季节性节律,(3)S形上升或下降,以及(4)有理型动力学,其中涉及初始阶段的增加,然后逐渐减少的每种形式的计算形式,并给出了一些实际的例子,鉴于其灵活性,我们的方法可以很好地拟合大量数据集,包括那些非常适合单指数函数的函数,经典的奥尔森函数严格是我们建议的一般方程的特定情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号