...
首页> 外文期刊>Geoderma: An International Journal of Soil Science >Silicon isotopes record dissolution and re-precipitation of pedogenic clay minerals in a podzolic soil chronosequence
【24h】

Silicon isotopes record dissolution and re-precipitation of pedogenic clay minerals in a podzolic soil chronosequence

机译:硅同位素记录了梯形土壤时间序列中成岩粘土矿物的溶解和再沉淀

获取原文
获取原文并翻译 | 示例
           

摘要

By providing the largest part of the reactive surface area of soils, secondary minerals play a major role in terrestrial biogeochemical processes. The understanding of the mechanisms governing neo(trans-)formation of pedogenic clay minerals in soils is therefore of the utmost importance to learn how soils evolve and impact the chemistry of elements in terrestrial environments. Soil-forming processes governing the evolution of secondary aluminosilicates in Podzols are however still not fully understood. The evolution of silicon (Si) isotope signature in the clay fraction of a podzolic soil chronosequence can provide new insight into these processes, enabling to trace the source of Si in secondary aluminosilicates during podzol-forming processes characterized by the mobilization, transport and precipitation of carbon, metals and Si. The Si isotope compositions in the clay fraction (comprised of primary and secondary minerals) document an increasing light Si-28 enrichment and depletion with soil age, respectively in illuvial B horizons and eluvial E horizon. The mass balance approach demonstrates that secondary minerals in the topsoil eluvial E horizons are isotopically heavier with delta Si-30 values increasing from -0.39 to +0.64%. in c.a. 200 years, while secondary minerals in the illuvial Bhs horizon are isotopically lighter (delta Si-30 = -2.31 parts per thousand), compared to the original "unweathered" secondary minerals in BC horizon (delta Si-30 = -1.40 parts per thousand). The evolution of Si isotope signatures is explained by the dissolution of pedogenic clay minerals in the topsoil, which is a source of light Si-28 for the re-precipitation of new clay minerals in the subsoil. This provides consistent evidence that in strong weathering environment such as encountered in Podzols, Si released from secondary minerals is partially used to form "tertiary clay minerals" over very short time scales (ca. 300 years). Our dataset demonstrates the usefulness to measure Si isotope signatures in the clay fraction to discern clay mineral changes (e.g., neoformation versus solid state transformation) during soil evolution. This offers new opportunity to better understand clay mineral genesis under environmental changes, and the short-term impact of the dissolution and re-precipitation of pedogenic clay minerals on soil fertility, soil carbon budget and elemental cycles in soil-plant systems
机译:通过提供最大的土壤反应表面积,次生矿物质在陆地生物地球化学过程中发挥了重要作用。因此,了解控制土壤中成岩粘土矿物新(反式)形成的机理对于了解土壤如何演化和影响地球环境中元素的化学性质至关重要。然而,仍未完全了解控制Podzols中次生铝硅酸盐演变的成土过程。梯形土壤时间序列粘土部分中硅(Si)同位素特征的演化可以为这些过程提供新的见解,从而能够在以动员,运输和沉淀为特征的Podzol形成过程中追踪次生铝硅酸盐中的Si来源。碳,金属和硅。粘土部分(由主要和次要矿物组成)中的Si同位素组成分别表明,在B层和E层上,随着土壤年龄的增加,Si-28的轻度Si-28富集和耗竭增加。质量平衡方法表明,表层土壤E层中的次生矿物同位素较重,Si-30δ值从-0.39增加到+ 0.64%。在c.a. 200年,而在Bhs方向上次生矿物的同位素变轻(δSi-30 = -2.31千分之一),而在BC层层中原始的“未风化”次生矿物(δSi-30 = -1.40千分之一) )。 Si同位素特征的演化可以通过在表层土壤中溶解成岩粘土矿物来解释,这是在地下土壤中重新沉淀新粘土矿物的轻质Si-28来源。这提供了一致的证据,证明在强风化环境(例如在Podzols中遇到)中,从次要矿物中释放出的Si在很短的时间内(大约300年)就被部分用来形成“三次粘土矿物”。我们的数据集证明了在粘土演化过程中测量Si同位素特征以识别粘土矿物变化(例如新形成与固态转化)的有用性。这提供了新的机会,可以更好地了解环境变化下的粘土矿物成因,以及成岩粘土矿物的溶解和再沉淀对土壤肥力,土壤碳收支和土壤植物系统中元素周期的短期影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号