...
首页> 外文期刊>Genome Biology >Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation
【24h】

Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation

机译:适应慢性铁限制的海洋硅藻的基因组和低铁反应

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Background Biogeochemical elemental cycling is driven by primary production of biomass via phototrophic phytoplankton growth, with 40% of marine productivity being assigned to diatoms. Phytoplankton growth is widely limited by the availability of iron, an essential component of the photosynthetic apparatus. The oceanic diatom Thalassiosira oceanica shows a remarkable tolerance to low-iron conditions and was chosen as a model for deciphering the cellular response upon shortage of this essential micronutrient. Results The combined efforts in genomics, transcriptomics and proteomics reveal an unexpected metabolic flexibility in response to iron availability for T. oceanica CCMP1005. The complex response comprises cellular retrenchment as well as remodeling of bioenergetic pathways, where the abundance of iron-rich photosynthetic proteins is lowered, whereas iron-rich mitochondrial proteins are preserved. As a consequence of iron deprivation, the photosynthetic machinery undergoes a remodeling to adjust the light energy utilization with the overall decrease in photosynthetic electron transfer complexes. Conclusions Beneficial adaptations to low-iron environments include strategies to lower the cellular iron requirements and to enhance iron uptake. A novel contribution enhancing iron economy of phototrophic growth is observed with the iron-regulated substitution of three metal-containing fructose-bisphosphate aldolases involved in metabolic conversion of carbohydrates for enzymes that do not contain metals. Further, our data identify candidate components of a high-affinity iron-uptake system, with several of the involved genes and domains originating from duplication events. A high genomic plasticity, as seen from the fraction of genes acquired through horizontal gene transfer, provides the platform for these complex adaptations to a low-iron world.
机译:背景技术生物地球化学元素循环是通过光养性浮游植物的生长来主要生产生物质来驱动的,其中40%的海洋生产力归属于硅藻。浮游植物的生长受到铁的可用性的广泛限制,铁是光合作用的重要组成部分。海洋硅藻Thalassiosira oceanica对低铁条件表现出显着的耐受性,因此被选为在缺乏这种必需微量营养素时破译细胞反应的模型。结果在基因组学,转录组学和蛋白质组学方面的共同努力揭示了对大洋红C鱼CCMP1005的铁可用性具有意想不到的代谢灵活性。复杂的反应包括细胞收缩以及生物能途径的重塑,其中富铁的光合蛋白的丰度降低,而富铁的线粒体蛋白得以保留。由于缺铁,光合作用机械进行了重塑,以调节光能利用率,同时光合作用电子转移复合物总体减少。结论对低铁环境的有益适应包括降低细胞对铁的需求并增加铁吸收的策略。通过铁调节三种参与碳水化合物的代谢转化的含金属的果糖-双磷酸醛缩酶的铁调节性取代不含金属的酶,可以观察到一种新的促进光养生长的铁经济性的贡献。此外,我们的数据确定了高亲和力铁吸收系统的候选成分,其中一些涉及的基因和结构域来自复制事件。从通过水平基因转移获得的基因比例来看,高基因组可塑性为这些复杂适应低铁世界提供了平台。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号