...
首页> 外文期刊>Geochemical Journal >Incongruent evaporation experiments on iron sulfide (Fe1-delta S) under H-2-rich (at 1 atm) and evacuated conditions
【24h】

Incongruent evaporation experiments on iron sulfide (Fe1-delta S) under H-2-rich (at 1 atm) and evacuated conditions

机译:富H-2(在1 atm)和抽空条件下硫化铁(Fe1-delta S)的不相容蒸发实验

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Evaporation experiments using pyrrhotite single crystals (Fe0.886S) were carried out at temperatures between 500 and 1300 degrees C at 1 arm in an H-2-CO2 gas flow (0.62-0.64 arm H-2), and at 500 and 900 degrees C under an evacuated condition. Under the H-2-rich condition, spongy metallic iron layer was formed on the sulfide crystal surface at temperatures below the Fe-FeS eutectic point as a result of incongruent evaporation, and developed inward almost conserving its original shape. The thickness of the iron layer increases linearly with time at constant temperatures (linear rate law) due to transportation of evaporated gas species through pores in the spongy iron layers. If incongruent evaporation is controlled by diffusion of element(s) in an evaporation residue layer, a parabolic rate law is expected. The linear rate law shows that FeS evaporates more efficiently than expected based on a parabolic rate law. The linear rate constant obtained at various temperatures obeys the Arrhenius relation: k(FeS)=(1.61 +/- 0.42) x 10(-3)exp(-115 +/- 2 [kJ/mol]/RT) [m/sec]. A minor part of metallic iron in the surface layer diffused into the inner sulfide to form stoichiometric FeS (troilite) in the early evaporation stage. Thus, the experiments can be almost regarded as evaporation of troilite. Evaporation coefficients of FeS were obtained by comparing the experimental results with calculated rates using the Hertz-Knudsen equation. They are small(1.4 x 10(-4)similar to 9.4 x 10(-6)) due to slow surface reaction and/or slow escape of S-bearing gas species into the gas flow. Mass-dependent isotopic fractionation of S by the evaporation was not detected within an error of +/-3 parts per thousand probably due to slow diffusivity of S in the sulfide crystal. In the evacuated experiments, evaporation occurred very slowly due to the absence of H-2 gas, which acts as a reducing agent. Iron residue layer was very thin or sometimes not detected probably because the evaporation rate of S from FeS became comparable to the evaporation rate of metallic iron, which can be neglected under the H-2-rich condition.
机译:使用磁黄铁矿单晶(Fe0.886S)的蒸发实验是在H-2-CO2气流(0.62-0.64 Arm H-2)中的1臂和500和900摄氏度的温度下在500和1300摄氏度之间进行的C在疏散条件下。在不富H 2的条件下,由于蒸发不均匀,在低于Fe-FeS共晶点的温度下,硫化物晶体表面形成了海绵状金属铁层,并向内发展,几乎保持了其原始形状。铁层的厚度在恒定温度(线性速率定律)下随时间线性增加,这是因为蒸发的气体物质通过海绵状铁层中的孔传输。如果通过蒸发残渣层中元素的扩散来控制不均匀的蒸发,则预计会有抛物线速率定律。线性速率定律表明,FeS的蒸发比基于抛物线速率定律的蒸发更有效率。在各种温度下获得的线性速率常数均符合Arrhenius关系:k(FeS)=(1.61 +/- 0.42)x 10(-3)exp(-115 +/- 2 [kJ / mol] / RT)[m /秒]。表层中的一小部分金属铁在早期蒸发阶段扩散到内部硫化物中,形成化学计量的FeS(三菱沸石)。因此,该实验几乎可以看作是三叶草的蒸发。通过使用Hertz-Knudsen方程将实验结果与计算出的速率进行比较,从而获得FeS的蒸发系数。由于表面反应缓慢和/或含S的气体物种缓慢逸出到气流中,因此它们很小(1.4 x 10(-4)类似于9.4 x 10(-6))。由于硫化物晶体中S的缓慢扩散,未在+/- 3千分之内的误差内未检测到由蒸发引起的S的质量依赖性同位素分馏。在抽空实验中,由于不存在H-2气体(起还原剂作用),蒸发非常缓慢。铁残留层非常薄,有时甚至无法检测到,这可能是因为FeS中S的蒸发速率变得与金属铁的蒸发速率相当,而在富H-2条件下可以忽略不计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号