...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems: 4. Numerical modeling of kinetic reaction paths
【24h】

Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems: 4. Numerical modeling of kinetic reaction paths

机译:分批系统中碱长石溶解与二次矿物沉淀耦合:4.动力学反应路径的数值模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper explores how dissolution and precipitation reactions are coupled in batch reactor experimental systems at elevated temperatures. This is the fourth paper in our series of " Coupled Alkali Feldspar Dissolution and Secondary Mineral Precipitation in Batch Systems" In our third paper, we demonstrated via speciation-solubility modeling that partial equilibrium between secondary minerals and aqueous solutions was not attained in feldspar hydrolysis batch reactors at 90-300°C and that a strong coupling between dissolution and precipitation reactions follows as a consequence of the slower precipitation of secondary minerals (Zhu and Lu, 2009). Here, we develop this concept further by using numerical reaction path models to elucidate how the dissolution and precipitation reactions are coupled. Modeling results show that a quasi-steady state was reached. At the quasi-steady state, dissolution reactions proceeded at rates that are orders of magnitude slower than the rates measured at far from equilibrium. The quasi-steady state is determined by the relative rate constants, and strongly influenced by the function of Gibbs free energy of reaction (ΔGr) in the rate laws.To explore the potential effects of fluid flow rates on the coupling of reactions, we extrapolate a batch system (Ganor et al., 2007) to open systems and simulated one-dimensional reactive mass transport for oligoclase dissolution and kaolinite precipitation in homogeneous porous media. Different steady states were achieved at different locations along the one-dimensional domain. The time-space distribution and saturation indices (SI) at the steady states were a function of flow rates for a given kinetic model. Regardless of the differences in SI, the ratio between oligoclase dissolution rates and kaolinite precipitation rates remained 1.626, as in the batch system case (Ganor et al., 2007). Therefore, our simulation results demonstrated coupling among dissolution, precipitation, and flow rates.Results reported in this communication lend support to our hypothesis that slow secondary mineral precipitation explains part of the well-known apparent discrepancy between lab measured and field estimated feldspar dissolution rates (Zhu et al., 2004). Here we show how the slow secondary mineral precipitation provides a regulator to explain why the systems are held close to equilibrium and show how the most often-quoted " near equilibrium" explanation for an apparent field-lab discrepancy can work quantitatively. The substantiated hypothesis now offers the promise of reconciling part of the apparent field-lab discrepancy.
机译:本文探讨了在高温下间歇反应器实验系统中溶解和沉淀反应是如何耦合的。这是我们的“批次系统中碱式长石溶解与次生矿物质耦合耦合”系列中的第四篇论文。在第三篇论文中,我们通过形态-溶解度模型证明了长石水解批次中次生矿物质与水溶液之间未达到部分平衡反应器在90-300°C的温度下反应,而溶解和沉淀反应之间的强耦合是次生矿物沉淀较慢的结果(Zhu and Lu,2009)。在这里,我们通过使用数值反应路径模型来阐明溶解和沉淀反应是如何耦合的,从而进一步发展了这一概念。建模结果表明达到了准稳态。在准稳态下,溶解反应的进行速度比在远离平衡状态下测得的速度要慢几个数量级。准稳态由相对速率常数决定,并受速率定律的吉布斯反应自由能(ΔGr)的函数的影响很大。为探索流体流速对反应耦合的潜在影响,我们进行了推断一个批处理系统(Ganor等人,2007)来打开系统并模拟一维反应性质量传递,以在均匀多孔介质中溶解寡聚酶和高岭石。在沿一维域的不同位置实现了不同的稳态。对于给定的动力学模型,稳态时空分布和饱和指数(SI)是流速的函数。不管SI的差异如何,寡糖酶溶解速率与高岭石沉淀速率之间的比率都保持在1.626,与分批系统的情况一样(Ganor等,2007)。因此,我们的模拟结果证明了溶出度,降水和流速之间的耦合。本通讯中报告的结果支持了我们的假设,即次生矿物缓慢析出解释了实验室测得的长石与溶质估计的长石溶解率之间的众所周知的明显差异( Zhu等,2004)。在这里,我们展示了缓慢的二次矿物沉淀如何提供一个调节器来解释为什么系统保持在接近平衡的状态,并展示了对于最明显的现场实验室差异最常被引用的“接近平衡”解释如何可以定量地工作。证实成立的假设现在有望调和部分明显的现场实验室差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号