...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Carbonate biomineralization induced by soil bacterium Bacillus megaterium
【24h】

Carbonate biomineralization induced by soil bacterium Bacillus megaterium

机译:土壤细菌巨大芽孢杆菌诱导的碳酸盐生物矿化

获取原文
获取原文并翻译 | 示例

摘要

Biogenic carbonates spawned from microbial activities are common occurrences in soils. Here, we investigate the carbonate biomineralization mediated by the bacterium Bacillus megaterium, a dominant strain separated from a loess profile in China. Upon completing bacterial cultivation, the ensuring products are centrifuged, and the resultant supernatant and the concentrated bacterial sludge as well as the un-separated culture are added separately into a Ca-CO3 containing solution for crystallization experiments. Results of XRD and SEM analysis indicate that calcite is the dominant mineral phase formed when the bacteria are present. When the supernatant alone is used, however, a significant portion of vaterite is also precipitated. Experimental results further reveal that the bacteria have a strong tendency to colonize the center area of the calcite {10 (1) over bar4} faces. Observed crystal morphology suggests that the bacterial colony may promote the growth normal to each individual {10 (1) over bar4} face of calcite when the cell concentration is high, but may retard it or even cause dissolution of the immediate substrate surfaces when the concentration is low. SEM images taken at earlier stages of the crystallization experiments demonstrate the nucleation of calcite on the bacterial cell walls but do not show obvious morphological changes on the nanometer- to submicron-sized nuclei. delta C-13 Measurements unveil that the crystals grown in the presence of bacteria are further enriched in the heavy carbon isotope, implying that the bacterial metabolism may not be the carbon sources for the mineralization. Based upon these findings, we propose a mechanism for the B. megaterium mediated calcite mineralization and conclude that the whole process involves epi- and inter-cellular growth in the local microenvironments whose conditions may be controlled by cell sequestration and proton pumping during bacterial respiration. (c) 2006 Elsevier Inc. All rights reserved.
机译:微生物活动产生的生物碳酸盐在土壤中很常见。在这里,我们研究了由巨大芽孢杆菌介导的碳酸盐生物矿化作用,这是一种与黄土剖面分离的优势菌株。完成细菌培养后,将保证产物离心,并将所得的上清液和浓缩的细菌污泥以及未分离的培养物分别添加到含Ca-CO3的溶液中进行结晶实验。 XRD和SEM分析的结果表明,当细菌存在时,方解石是形成的主要矿物相。然而,当仅使用上清液时,很大部分的球ate石也会沉淀。实验结果进一步表明,细菌很容易在方解石{10(1)的bar4}面上占据中心区域。观察到的晶体形态表明,当细胞浓度高时,细菌菌落可促进方解石的bar4}面上每个个体{10(1)的正常生长,但当浓度高时,细菌菌落可能会延迟其生长,甚至导致立即的底物表面溶解低。在结晶实验的早期阶段拍摄的SEM图像显示方解石在细菌细胞壁上的形核,但在纳米级至亚微米级的核上未显示出明显的形态变化。 δC-13测量表明,在细菌存在下生长的晶体进一步富含重碳同位素,这意味着细菌代谢可能不是矿化的碳源。基于这些发现,我们提出了巨大芽孢杆菌介导的方解石矿化的机制,并得出结论,整个过程涉及局部微环境中的表皮和细胞间生长,其条件可能受细菌呼吸作用中的细胞螯合和质子泵浦控制。 (c)2006 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号