...
【24h】

Formation of Zn-Ca phyllomanganate nanoparticles in grass roots

机译:草根中锌钙叶锰酸锌纳米粒子的形成

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

It is now well established that a number of terrestrial and aquatic microorganisms have the capacity to oxidize and precipitate Mn as phyllomanganate. However, this biomineralization has never been shown to occur in plant tissues, nor has the structure of a natural Mn(IV) biooxide been characterized in detail. We show that the graminaceous plant Festuca rubra (red fescue) produces a Zn-rich phyllomanganate with constant Zn:Mn and Ca:Mn atomic ratios (0.46 and 0.38, respectively) when grown on a contaminated sediment. This new phase is so far the Zn-richest manganate known to form in nature (chalcophanite has a Zn:Mn ratio of 0.33) and has no synthetic equivalent. Visual examination of root fragments under a microscope shows black precipitates about ten to several tens of microns in size, and their imaging with backscattered and secondary electrons demonstrates that they are located in the root epidermis. In situ measurements by Mn and Zn K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray diffraction (XRD) with a micro-focused beam can be quantitatively described by a single-phase model consisting of Mn(IV) octahedral layers with 22% vacant sites capped with tetrahedral and octahedral Zn in proportions of 3:1. The layer charge deficit is also partly balanced by interlayer Mn and Ca. Diffracting crystallites have a domain radius of 33 angstrom in the ab plane and contain only 1.2 layers (similar to 8.6 angstrom) on average. Since this biogenic Mn oxide consists mostly of isolated layers, basal 00l reflections are essentially absent despite its lamellar structure. Individual Mn layers are probably held together in the Mn-Zn precipitates by stabilizing organic molecules. Zinc biomineralization by plants likely is a defense mechanism against toxicity induced by excess concentrations of this metal in the rhizosphere. (C) 2008 Elsevier Ltd. All rights reserved.
机译:现在已经确定,许多陆生和水生微生物具有氧化和沉淀作为叶锰酸锰的能力。然而,从未证明这种生物矿化作用在植物组织中发生,也没有详细描述天然Mn(IV)生物氧化物的结构。我们显示,当在污染的沉积物上生长时,禾本科植物Festuca rubra(红羊茅)会产生具有恒定Zn:Mn和Ca:Mn原子比(分别为0.46和0.38)的富锌叶锰酸锰。到目前为止,这种新相是自然界中已知形成的最富锌的锰酸盐(黄铜矿的Zn:Mn比为0.33),并且没有合成当量。在显微镜下目视检查根部碎片,发现黑色沉淀物的大小约为十至几十微米,并且通过反向散射和二次电子对其成像表明其位于根部表皮中。 Mn和Zn的K边缘原位测量扩展X射线吸收精细结构(EXAFS)光谱和微聚焦束的X射线衍射(XRD)可以由Mn(IV)组成的单相模型定量描述)具有22%的空位的八面体层,以3:1的比例覆盖了四面体和八面体Zn。层间电荷不足也通过层间Mn和Ca部分平衡。衍射微晶在ab平面中的畴半径为33埃,平均仅包含1.2层(约8.6埃)。由于这种生物成因的Mn氧化物主要由孤立的层组成,因此尽管具有层状结构,也基本上不存在基底00l反射。各个Mn层可能通过稳定有机分子而保持在Mn-Zn沉淀物中。植物锌的生物矿化作用可能是针对根际中该金属浓度过高引起的毒性的防御机制。 (C)2008 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号