首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Zinc surface complexes on birnessite: A density functional theory study
【24h】

Zinc surface complexes on birnessite: A density functional theory study

机译:水钠锰矿上的锌表面配合物:密度泛函理论研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Biogeochemical cycling of zinc is strongly influenced by sorption on birnessite minerals (layer-type Mn0_2), which are found in diverse terrestrial and aquatic environments. Zinc has been observed to form both tetrahedral (Zn~IV) and octahedral (Zn~Vl) triple-corner-sharing surface complexes (TCS) at Mn(IV) vacancy sites in hexagonal birnessite. The octahedral com_plex is expected to be similar to that of Zn in the Mn oxide mineral, chalcophanite (ZnMn_3O_7_3Н_2O), but the reason for the occurrence of the four-coordinate Zn surface species remains unclear. We address this issue computationally using spin-polar_ized density functional theory (DFT) to examine the Zn~Iv-TCS and Zn~vI-TCS species. Structural parameters obtained by DFT geometry optimization were in excellent agreement with available experimental data on Zn-birnessites. Total energy, magnetic moments, and electron overlap populations obtained by DFT for isolated Zn~Iv-TCS revealed that this species is stable in birnessite without a need for Mn(III) substitution in the octahedral sheet and that it is more effective in reducing undersaturation of surface O at a Mn vacancy than is Zn~VI-TCS. Comparison between geometry-optimized ZnMn_3O_7_3Н_2O (chalcophanite) and the hypothetical monohydrate mineral, ZnMn_3O_7_Н_2O, which contains only tetrahedral Zn, showed that the hydration state of Zn significantly affects birnessite structural stability. Finally, our study also revealed that, relative to their positions in an ideal vacancy-free MnO_2, Mn nearest to Zn in a TCS surface complex move toward the vacancy by 0.08-0.11 A, while surface O bordering the vacancy move away from it by 0.16-0.21 A, in agreement with recent X-ray absorption spectroscopic analyses.
机译:锌的生物地球化学循环受到水钠榴石矿物(层型Mn0_2)的吸附的强烈影响,而水钠榴石矿物在多种陆地和水生环境中均存在。已经观察到锌在六角形水钠锰矿的Mn(IV)空位处形成四面体(Zn_IV)和八面体(Zn_VI)三角共享表面复合物(TCS)。预计八面体复合物与锰氧化物矿物中的黄铜矿(ZnMn_3O_7_3Н_2O)中的Zn相似,但尚不清楚出现四坐标Zn表面物种的原因。我们使用自旋极化密度泛函理论(DFT)在计算上解决了这个问题,以检查Zn〜Iv-TCS和Zn〜vI-TCS物种。通过DFT几何优化获得的结构参数与Zn水钠锰矿的可用实验数据高度吻合。通过DFT获得的分离的Zn〜Iv-TCS的总能量,磁矩和电子重叠种群表明,该物种在水钠锰矿中是稳定的,无需在八面体薄片中替换Mn(III),并且它在减少欠饱和方面更有效与Zn〜VI-TCS相比,Mn在空位处的表面O的厚度。几何优化的ZnMn_3O_7_3Н_2O(黄铜矿)与假设的一水合物矿物ZnMn_3O_7_Н_2O仅包含四面体Zn的比较表明,Zn的水合状态显着影响水钠锰矿的结构稳定性。最后,我们的研究还表明,相对于它们在理想的无空位的MnO_2中的位置,在TCS表面复合物中最接近Zn的Mn向空位移动0.08-0.11 A,而与空位接壤的表面O向着空位移动了0.08-0.11A。 0.16-0.21 A,与最近的X射线吸收光谱分析一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号