...
【24h】

Copper isotope fractionation in acid mine drainage

机译:酸性矿山排水中的铜同位素分馏

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We measured the Cu isotopic composition of primary minerals and stream water affected by acid mine drainage in a mineralized watershed (Colorado, USA). The δ~(65)Cu values (based on ~(65)Cu/~(63)Cu) of enargite (δ~(65)Cu = -0.01 ± 0.10‰; 2σ) and chalcopyrite (δ~(65)Cu = 0.16 ± 0.10‰) are within the range of reported values for terrestrial primary Cu sulfides (-1‰ < δ~(65)Cu < 1‰). These mineral samples show lower δ~(65)Cu values than stream waters (1.38‰ ≤ δ~(65)Cu ≤ 1.69‰). The average isotopic fractionation (Δ_(aq-min) = δ~(65)Cu_(aq) - δ~(65)Cu_(min), where the latter is measured on mineral samples from the field system), equals 1.43 ± 0.14‰ and 1.60 ± 0.14‰ for chalcopyrite and enargite, respectively. To interpret this field survey, we leached chalcopyrite and enargite in batch experiments and found that, as in the field, the leachate is enriched in ~(65)Cu relative to chalcopyrite (1.37 ± 0.14‰) and enargite (0.98 ± 0.14‰) when microorganisms are absent. Leaching of minerals in the presence of Acidithiobacillus ferrooxidans results in smaller average fractionation in the opposite direction for chalcopyrite (Δ_(aq-mino) = - 0.57 ± 0.14 ‰, where mino refers to the starting mineral) and no apparent fractionation for enargite (Δ_(aq-mino) = 0.14 ± 0.14 ‰). Abiotic fractionation is attributed to preferential oxidation of 65Cu+ at the interface of the isotopically homogeneous mineral and the surface oxidized layer, followed by solubilization. When microorganisms are present, the abiotic fractionation is most likely not seen due to preferential association of ~(65)Cu_(aq) with A. ferrooxidans cells and related precipitates. In the biotic experiments, Cu was observed under TEM to occur in precipitates around bacteria and in intracellular polyphosphate granules. Thus, the values of δ~(65)Cu in the field and laboratory systems are presumably determined by the balance of Cu released abiotically and Cu that interacts with cells and related precipitates. Such isotopic signatures resulting from Cu sulfide dissolution should be useful for acid mine drainage remediation and ore prospecting purposes.
机译:我们测量了矿化流域(科罗拉多州,美国)中受酸性矿山排水影响的主要矿物和溪流水的铜同位素组成。辉镁石(δ〜(65)Cu = -0.01±0.10‰;2σ)和黄铜矿(δ〜(65)Cu的δ〜(65)Cu值(基于〜(65)Cu /〜(63)Cu) = 0.16±0.10‰)在地面原生铜硫化物的报告值范围内(-1‰<δ〜(65)Cu <1‰)。这些矿物样品显示的δ〜(65)Cu值低于溪流水(1.38‰≤δ〜(65)Cu≤1.69‰)。平均同位素分数(Δ_(aq-min)=δ〜(65)Cu_(aq)-δ〜(65)Cu_(min),其中后者是根据现场系统的矿物样品测量的),等于1.43±0.14黄铜矿和堇青石分别为‰和1.60±0.14‰。为了解释这一现场调查,我们通过批量实验浸出了黄铜矿和镁辉石,发现与田间一样,相对于黄铜矿(1.37±0.14‰)和顽辉石(0.98±0.14‰),渗滤液富含〜(65)Cu。当没有微生物时。在酸性氧化铁硫杆菌存在下矿物的浸出导致黄铜矿在相反方向上的平均分馏较小(Δ_(aq-mino)=-0.57±0.14‰,其中mino是指起始矿物),而没有辉石(明显的分馏) (水-氨基)= 0.14±0.14‰)。非生物分级分离是由于65Cu +在同位素均质矿物与表面氧化层的界面处优先氧化,然后溶解。当存在微生物时,由于〜(65)Cu_(aq)与A.ferrooxidans细胞及相关沉淀物的优先结合,最有可能看不到非生物组分。在生物实验中,在TEM下观察到Cu出现在细菌周围的沉淀物中和细胞内多磷酸盐颗粒中。因此,据推测,在田间和实验室系统中,δ〜(65)Cu的值取决于非生物释放的Cu和与细胞以及相关沉淀物相互作用的Cu的平衡。由硫化铜溶解产生的这种同位素特征应可用于酸性矿山排水修复和找矿目的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号