首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Experimental study of copper(I) chloride complexing in hydrothermal solutions at 40 to 300℃ and saturated water vapor pressure
【24h】

Experimental study of copper(I) chloride complexing in hydrothermal solutions at 40 to 300℃ and saturated water vapor pressure

机译:40〜300℃饱和水蒸气压在水热溶液中络合氯化铜的实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

The solubility of Cu phases was measured in vapor-saturated aqueous HCl/NaCl solutions at temperatures ranging from 40 to 300 ℃, total chloride concentration from 0.01 to 1 m, and pH from 0 to 3.5. For temperatures up to and including 150 ℃, CuCl_((s)) was used as the solid reactant. At higher temperatures, foils of metallic Cu and Ag were used. Silver was added as a redox sensor, as the equilibrium constants describing dissolution of this metal as chloride complexes are already known to high precision. Copper was found to dissolve primarily as CuCl((aq)), CuCl_2~-, and CuCl_3~(2-). Data collected from the experiments were regressed to determine the following equilibrium constants as functions of temperature (K): Cu_((s)) + 1/4O_(2(g)) + H~+ + Cl~- = CuCl((aq)) + 1/2H_2O_((1)), log K_1 = 0.1316~*(1000/T)~2 + 2.865~*(1000/T) + 4.4243, R~2 = 0.9958; Cu_((s)) + 1/4O_(2(g)) + H~+ + 2Cl~- = CuCl_2~- + 1/2H_2O_((1)), log K_2 = 0.0981~*(1000/T)~2 - 2.2961~*(1000/T) + 12.916, R~2 = 0.9896; Cu_((s)) + 1/4O_(2(g)) + H~+ + 3Cl~- = CuCl_3~(2-) + 1/2H_2O_((1)), log K_3 = 2.2704~*(1000/T)~2 - 8.7646~*(1000/T) + 20.643, R~2 = 0.9941. These equations can be used to calculate equilibrium constants at temperatures up to 350 ℃ and vapor saturated pressure. Our results at T < 150 ℃ agree well with those published by other researchers, but the agreement is variable for results at T > 150 ℃. At higher temperatures, our data for CuCl_2~- are in accord with those of Var yash (1992), whereas our data for CuCl((aq)) deviate significantly from the results of Crerar and Barnes (1976). The agreement with published theoretical estimates of the formation constants for Cu(I) chloride complexes (Helgeson, 1969; Ruaya, 1988; Sverjensky et al., 1997) is not good, especially at T > 200 ℃. The solubility of chalcopyrite was calculated for a variety of conditions. For unit activity of Cl~-, pH between 3 and 5, and oxygen and sulfur fugacity buffered by the assemblage pyrite-pyrrhotite-magnetite, Cu is transported mainly as CuCl_2~-, and has a solubility of 212 moles/kg (13.5 ppm) at 350 ℃ and pH = 3. Chalcopyrite will deposit in response to an increase in pH, or decreases in a_(Cl~-), temperature, and oxygen fugacity. Calculations of the solubility of chalcopyrite in seafloor hydrothermal systems show that the Cu-rich zones in volcanogenic massive sulfide deposits form at temperatures >250 ℃ and that cooling and/or pH increase are the most likely depositional controls. Below 250 ℃, chloride brines are incapable of transporting significant quantities of Cu unless conditions are unusually oxidized.
机译:在气相饱和的HCl / NaCl水溶液中,在40至300℃,总氯离子浓度为0.01至1 m,pH为0至3.5的条件下,测量了Cu相的溶解度。对于高达150℃(包括150℃)的温度,将CuCl_(s)用作固体反应物。在较高温度下,使用金属铜和银箔。添加银作为氧化还原传感器,因为描述该金属作为氯化物络合物的溶解的平衡常数已经众所周知。发现铜主要溶解为CuCl((aq)),CuCl_2〜-和CuCl_3〜(2-)。从实验收集的数据进行回归以确定作为温度(K)的函数的以下平衡常数:Cu_(s)+ 1 / 4O_(2(g))+ H〜+ + Cl〜-= CuCl((aq ))+ 1 / 2H_2O _((1)),log K_1 = 0.1316〜*(1000 / T)〜2 + 2.865〜*(1000 / T)+ 4.4243,R〜2 = 0.9958; Cu_(s)+ 1 / 4O_(2(g))+ H〜+ + 2Cl〜-= CuCl_2〜-+ 1 / 2H_2O _((1)),log K_2 = 0.0981〜*(1000 / T)〜 2-2.2961〜*(1000 / T)+ 12.916,R〜2 = 0.9896; Cu _((s))+ 1 / 4O_(2(g))+ H〜+ + 3Cl〜-= CuCl_3〜(2-)+ 1 / 2H_2O _((1)),log K_3 = 2.2704〜*(1000 / T)〜2-8.7646〜*(1000 / T)+ 20.643,R〜2 = 0.9941。这些方程可用于计算温度高达350℃和蒸汽饱和压力下的平衡常数。我们在T <150℃下的结果与其他研究人员发表的结果非常吻合,但是对于T> 150℃下的结果,该结果是可变的。在较高温度下,我们的CuCl_2〜-数据与Var yash(1992)的数据一致,而我们的CuCl((aq))数据则与Crerar和Barnes(1976)的结果明显不同。氯化铜(I)配合物的形成常数与已发表的理论估计值(Helgeson,1969; Ruaya,1988; Sverjensky等,1997)的一致性不好,尤其是在T> 200℃时。在各种条件下计算黄铜矿的溶解度。对于Cl〜-的单位活性,pH在3至5之间以及由黄铁矿-硫铁矿-磁铁矿组合缓冲的氧气和硫逸度,Cu主要以CuCl_2〜-的形式运输,其溶解度为212摩尔/kg(13.5 ppm)。 )在350℃和pH = 3的情况下,黄铜矿将随着pH的增加或a_(Cl〜-),温度和氧逸度的降低而沉积。黄铜矿在海底热液系统中的溶解度计算表明,火山成因的块状硫化物矿床中富铜区在温度> 250℃时形成,冷却和/或pH升高是最可能的沉积控制。低于250℃时,除非条件被异常氧化,否则氯化物卤水不能运输大量的Cu。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号