...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Influence of biogenic Fe(II) on the extent of microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite
【24h】

Influence of biogenic Fe(II) on the extent of microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite

机译:生铁(II)对黏土矿物绿脱石,伊利石和绿泥石中Fe(III)微生物还原程度的影响

获取原文
获取原文并翻译 | 示例

摘要

Microbial reduction of Fe(III) in clay minerals is an important process that affects properties of clay-rich materials and iron biogeo-chemical cycling in natural environments. Microbial reduction often ceases before all Fe(III) in clay minerals is exhausted. The factors causing the cessation are, however, not well understood. The objective of this study was to assess the role of biogenic Fe(II) in microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite. Bioreduction experiments were performed in batch systems, where lactate was used as the sole electron donor, Fe(III) in clay minerals as the sole electron acceptor, and Sheivanellaputrqfaciens CN32 as the mediator with and without an electron shuttle (AQDS). Our results showed that bioreduction activity ceased within two weeks with variable extents of bioreduction of structural Fe(III) in clay minerals. When fresh CN32 cells were added to old cultures (6 months), bioreduction resumed, and extents increased. Thus, cessation of Fe(III) bioreduction was not necessarily due to exhaustion of bioavailable Fe(III) in the mineral structure, but changes in cell physiology or solution chemistry, such as Fe(II) production during microbial reduction, may have inhibited the extent of bioreduction. To investigate the effect of Fe(II) inhibition on CN32 reduction activity, a typical bioreduction process (consisting of lactate, clay, cells, and AQDS in a single tube) was separated into two steps: (1) AQDS was reduced by cells in the absence of clay; (2) Fe(III) in clays was reduced by biogenic AH(2)DS in the absence of cells. With this method, the extent of Fe(III) reduction increased by 45-233%, depending on the clay mineral involved. Transmission electron microscopy observation revealed a thick halo surrounding cell surfaces that most likely resulted from Fe(II) sorption/precipitation. Similarly, the inhibitory effect of Fe(II) sorbed onto clay surfaces was assessed by presorbing a certain amount of Fe(II) onto clay surfaces followed by AH2DS reduction of Fe(III). The reduction extent consistently decreased with an increasing amount of presorbed Fe(II). The relative reduction extent [i.e., the reduction extent normalized to that when the amount of presorbed Fe(II) was zero] was similar for all clay minerals studied and showed a systematic decrease with an increasing clay-presorbed Fe(II) concentration. These results suggest a similar inhibitory effect of clay-sorbed Fe(II) for different clay minerals. An equilibrium thermodynamic model was constructed with independently estimated parameters to evaluate whether the observed cessation of Fe(III) reduction by AH(2)DS was due to exhaustion of reaction free energy. Model-calculated reduction extents were, however, over 50% higher than experimentally measured, indicating that other factors, such as blockage of the electron transfer chain and mineralogy, restricted the reduction extent. Another important result of this study was the relative reducibility of Fe(III) in different clays: nontronite > chlorite > illite. This order was qualitatively consistent with the differences in the crystal structure and layer charge of these minerals. (c) 2007 Published by Elsevier Inc.
机译:微生物还原粘土矿物中的Fe(III)是一个重要的过程,它会影响富含粘土的材料的特性以及自然环境中铁生物地球化学循环。在粘土矿物中的所有Fe(III)耗尽之前,微生物的还原作用往往会停止。但是,导致戒烟的因素尚未得到很好的理解。本研究的目的是评估生物源性Fe(II)在微生物还原粘土矿物囊脱石,伊利石和绿泥石中的Fe(III)的作用。生物还原实验在分批系统中进行,其中乳酸用作唯一的电子供体,粘土矿物中的Fe(III)作为唯一的电子受体,Sheivanellaputrqfaciens CN32作为带有和不带有电子穿梭(AQDS)的介体。我们的结果表明,随着粘土矿物中结构性Fe(III)的生物还原程度不同,生物还原活性在两周内停止。当将新鲜的CN32细胞添加到旧培养物中(6个月)时,恢复了生物还原作用,并且程度增加了。因此,停止Fe(III)的生物还原并不一定是由于矿物结构中可利用的Fe(III)的耗尽,而是细胞生理学或溶液化学的变化,例如微生物还原过程中Fe(II)的产生,可能已抑制了该过程。生物还原程度。为了研究Fe(II)抑制对CN32还原活性的影响,将典型的生物还原过程(由单个管中的乳酸,粘土,细胞和AQDS组成)分为两个步骤:(1)细胞中的AQDS还原没有黏土; (2)在没有细胞的情况下,通过生物AH(2)DS减少了粘土中的Fe(III)。用这种方法,Fe(III)还原的程度增加了45-233%,这取决于所涉及的粘土矿物。透射电子显微镜观察显示,细胞表面周围有厚厚的光环,很可能是由于Fe(II)的吸附/沉淀所致。类似地,通过在粘土表面上预先吸附一定量的Fe(II),然后通过AH2DS还原Fe(III)来评估吸附在粘土表面上的Fe(II)的抑制作用。还原程度随着预吸附的Fe(II)的增加而不断降低。所研究的所有粘土矿物的相对还原程度[即,还原程度归一化为当预吸附的Fe(II)量为零时的还原程度]相似,并且随着粘土预吸附的Fe(II)浓度的增加而显示出系统的降低。这些结果表明粘土吸附的Fe(II)对不同粘土矿物具有相似的抑制作用。构建具有独立估计参数的平衡热力学模型,以评估观察到的停止通过AH(2)DS还原Fe(III)的原因是否是由于反应自由能的耗尽。然而,模型计算的还原程度比实验测量的高50%以上,表明其他因素(例如电子传输链的阻塞和矿物学)限制了还原程度。这项研究的另一个重要结果是不同粘土中Fe(III)的相对还原性:绿脱石>亚氯酸盐>伊利石。该顺序在质量上与这些矿物的晶体结构和层电荷的差异一致。 (c)2007年由Elsevier Inc.发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号