【24h】

Two diffusion pathways in quartz: A combined UV-laser and RBS study

机译:石英中的两种扩散途径:结合紫外激光和RBS研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The diffusive behavior of argon in quartz was investigated with three analytical depth profiling methods: Rutherford Backscattering Spectroscopy (RBS), 213nm laser ablation, and 193nm (Excimer) laser ablation on the same set of experimental samples. The integration of multiple depth profiling methods, each with different spatial resolution and sensitivity, allows for the cross-checking of methods where data ranges coincide. The use of multiple methods also allows for exploration of diffusive phenomena over multiple length-scales. Samples included both natural clear rock crystal quartz and synthetic citrine quartz. Laser analysis of clear quartz was compromised by poor coupling with the laser, whereas the citrine quartz was more easily analyzed (particularly with 193nm laser). Diffusivity measured by both RBS and 193nm laser ablation in the outermost 0.3μm region of citrine quartz are self-consistent and in agreement with previously published RBS data on other quartz samples (including the clear quartz measured by RBS in this study). Apparent solubilities (extrapolated surface concentrations) for citrine quartz are in good agreement between RBS, 213nm, and 193nm laser analyses. Deeper penetration of argon measured up to 100μm depth with the 213nm laser reveal contributions of a second, faster diffusive pathway, effective in transporting much lower concentrations of argon into the crystal interiors of both clear and citrine quartz. By assuming such deep diffusion is dominated by fast pathways and approximating them as a network of planar features, the net diffusive uptake can be modeled and quantified with the Whipple-LeClaire equation, yielding δD_b values of 1.32×10~(-14) to 9.1×10~(-17)cm~3/s. While solubility values from the measured profiles confirm suggestions that quartz has a large capacity for argon uptake (making it a potentially important sink for argon in the crust), the slow rate of lattice diffusion may limit its capability to take up argon in shorter lived geologic environments and in experiments. In such shorter-lived systems, bulk argon diffusive uptake will be dominated by the fast pathway and the quartz lattice (including natural isolated defects that may also be storing argon) may never reach its equilibrium capacity.
机译:使用三种分析深度剖析方法研究了氩在石英中的扩散行为:卢瑟福背散射光谱(RBS),213nm激光烧蚀和193nm(准分子)激光烧蚀在同一组实验样品上。多种深度分析方法的集成,每种方法具有不同的空间分辨率和灵敏度,因此可以对数据范围一致的方法进行交叉检查。多种方法的使用还允许探索多个长度尺度上的扩散现象。样品包括天然透明的石英晶体石英和合成的柠檬碱石英。透明石英的激光分析由于与激光的耦合不良而受到损害,而黄水晶则更易于分析(特别是使用193nm激光)。通过RBS和193nm激光烧蚀在黄水晶的最外层0.3μm区域中测得的扩散率是自洽的,并且与先前发布的有关其他石英样品的RBS数据(包括本研究中通过RBS测量的透明石英)一致。黄水晶的表观溶解度(外推表面浓度)在RBS,213nm和193nm激光分析之间具有很好的一致性。用213nm激光测得的深度达100μm的更深的氩气渗透显示出第二条更快的扩散路径,可有效地将低得多的浓度的氩气输送到透明石英和黄水晶的晶体内部。通过假设这种深扩散以快速路径为主并将其近似为平面特征网络,可以用Whipple-LeClaire方程对净扩散吸收进行建模和量化,得出δD_b值为1.32×10〜(-14)至9.1 ×10〜(-17)cm〜3 /秒虽然从测量剖面获得的溶解度值证实了石英具有大的氩气吸收能力(使其成为地壳中氩气的潜在重要汇),但晶格扩散速度缓慢可能会限制其在寿命较短的地质环境中吸收氩气的能力。环境和实验中。在这种寿命较短的系统中,大量氩气的扩散吸收将由快速途径控制,石英晶格(包括可能也存储氩气的自然隔离缺陷)可能永远无法达到其平衡能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号