...
【24h】

OXYGEN ISOTOPE STUDIES OF ACHONDRITES [Review]

机译:瓶罐的氧同位素研究[综述]

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Oxygen isotope abundances provide a powerful tool for recognizing genetic relationships among meteorites. Among the differentiated achondrites, three isotopic groups are recognized: (1) SNC (Mars), (2) Earth and Moon, and (3) HED (howardites, eucrites, diogenites). The HED group also contains the mesosiderites, main-group pallasites, and silicates from IIIAB irons. The angrites may be marginally resolvable from the LIED group. Within each of these groups, internal geologic processes give rise to isotopic variations along a slope-1/2 fractionation line, as is well known for terrestrial materials. Variations of Delta(17)O from one planet to another are inherited from the inhomogeneities in the solar nebula, as illustrated by the isotopic compositions of chondrites and their constituents. Among the undifferentiated achondrites, five isotopic groups are found: (I)aubrites, (2) winonaites and IAB-IIICD irons, (3) brachinites, (4) acapulcoites and lodranites, and (5) ureilites. The isotopic compositions of aubrites coincide with the Earth and Moon, and also with the enstatite chondrites. These bodies apparently were derived from a common reservoir, the isotopic composition of which was established at the chondrule scale by nebular processes. Isotopic similarities between chondrites and achondrites are seen only for the following instances: (1) enstatite chondrites and aubrites, (2) H chondrites and LIE irons, and (3) L or LL chondrites and IVA irons. The isotopic data also support the following genetic associations: (1) winonaites and IAB-IIICD irons, (2) acapulcoites and lodranites, and(3) ureilites and dark inclusions of C3 chondrites. An attempt to reconcile the whole-planet isotopic compositions of Earth, Mars, and the eucrite parent body with mixing models of their chemical compositions failed. It is not possible to satisfy both the chemical and isotopic compositions of the terrestrial planets using known primitive Solar System components. [References: 139]
机译:氧同位素丰度为识别陨石之间的遗传关系提供了强大的工具。在分化的软晶石中,识别出三个同位素组:(1)SNC(火星),(2)地球和月球,以及(3)HED(菱铁矿,玉石,双辉石)。 HED组还包含中型菱铁矿,主族方石和来自IIIAB铁的硅酸盐。天使可以从LIED组中分辨出来。在每个组中,内部地质过程会导致沿坡度1/2分馏线的同位素变化,这对于陆地材料而言是众所周知的。球状陨石及其成分的同位素组成说明了太阳星云中的不均匀性是从一个星球到另一个星球的Delta(17)O变化的结果。在未分化的陨石中,发现了五个同位素组:(I)钠铁矿,(2)威诺铁矿和IAB-IIICD铁,(3)角铁矿,(4)硫铝铁矿和氯丹铁矿,以及(5)尿素石。奥氏体的同位素组成与地球和月球以及顽辉长晶陨石重合。这些尸体显然来自一个共同的储集层,该储集层的同位素组成是通过星状突在软骨的尺度上建立的。仅在以下情况下才能看到球粒陨石和长晶陨石之间的同位素相似性:(1)顽辉榴石球粒和长石,(2)H球粒陨石和LIE铁,以及(3)L或LL球粒陨石和IVA铁。同位素数据还支持以下遗传关联:(1)蜡铁矿和IAB-IIICD铁,(2)硫镁石和菱锰矿,以及(3)纤沸石和C3球粒陨石的深色夹杂物。用化学成分的混合模型调和地球,火星和玉石母体的全行星同位素组成的尝试失败了。使用已知的原始太阳系组件无法同时满足地球行星的化学和同位素组成。 [参考:139]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号