...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >HYDROSULPHIDE COMPLEXING OF AU(I) IN HYDROTHERMAL SOLUTIONS FROM 150-400-DEGREES-C AND 500-1500BAR
【24h】

HYDROSULPHIDE COMPLEXING OF AU(I) IN HYDROTHERMAL SOLUTIONS FROM 150-400-DEGREES-C AND 500-1500BAR

机译:150-400-C和500-1500BAR的水热溶液中AU(I)的氢氧根络合物

获取原文
获取原文并翻译 | 示例
           

摘要

The solubility of gold has been measured in aqueous sulphide solutions at temperatures between 150 degrees C and 500 degrees C and pressures of 500-1500 bar over a wide range of pH and total dissolved sulphur concentrations. The solubilities ranged from 0.002-1 mg/kg (1 x 10(-8) to 5 X 10(-6) m) in experiments with low total sulphur and acid pH, and from 2-108 mg/kg (1 x 10(-5) to 5 X 10(-4) m) in solutions with high total reduced sulphur concentrations and near neutral pH. The solubilities generally increased with increasing temperature, pH, and total dissolved sulphur. At near neutral pH, an inverse correlation between solubility and pressure was observed, whereas in acid pH solutions, above 150 degrees C, increasing pressure also increased the solubility. In near neutral pH solutions a solubility maximum was observed. This maximum is due to the species Au(HS)(2)(-). However, with increasing temperature, in accordance with the shift of pK(1) of H2S towards more alkaline pH, the maximum solubility also shifts to higher pH-values and consequently, at high temperatures the species stable at lower pH will dominate. It has been unambiguously proven that over a wide range of temperatures and pressures in reduced sulphur-containing hydrothermal solutions of low pH, the stoichiometry of the dominant Au(I)-hydrosulphide complex, is AuHS0. High temperature and high pressure equilibrium constants for the formation of the Au(I)-hydrosulphide complexes, AuHS0, and Au(HS)(2)(-), pertaining to the equilibria Au-(s) + H2S = AuHS0 + 1/2H(2(g)) (1) and Au-(s) + H2S + HS-- = Au(HS)(2)(-) + 1/2H(2(g)), (2) have been calculated. The nonlinear least squares fitted equilibrium constant for reaction (1) varies from log K-(1) = -6.81 at 150 degrees C/500 bar to a maximum of -5.90 at 200 degrees C/1500 bar and decreases again at higher temperatures (-7.83 at 400 degrees C/500 bars). For reaction (2), a similar variation occurs: log K-(2) = -1.45 at 150 degrees C/500 bar to -1.03 at 250 degrees C/500 bar and -1.75 at 400 degrees C/1500 bar. The thermodynamic functions for the Au(I)-hydrosulphide formation reactions and the cumulative and stepwise formation constants were derived after transforming the above reactions into isocoulombic form. The equilibrium constants for the uncharged complex, AuHS0, show that this species plays an important role in the transport and deposition of gold in ore depositing environments which are characterised by low pH fluids. [References: 42]
机译:已经在宽范围的pH值和总溶解硫浓度范围内,在150摄氏度和500摄氏度之间的温度和500-1500巴的压力下,在硫化水溶液中测量了金的溶解度。在低总硫和酸性pH的实验中,溶解度范围为0.002-1 mg / kg(1 x 10(-8)到5 X 10(-6)m),以及2-108 mg / kg(1 x 10 (-5)到5 X 10(-4)m)的溶液中总硫含量降低且pH值接近中性。溶解度通常随温度,pH和总溶解硫的增加而增加。在接近中性pH的条件下,观察到溶解度与压力成反比关系,而在酸性pH溶液中(高于150摄氏度),增加压力也会增加溶解度。在接近中性的pH溶液中观察到最大溶解度。此最大值归因于Au(HS)(2)(-)物种。但是,随着温度的升高,根据H2S的pK(1)向更碱性的pH值变化,最大溶解度也向更高的pH值变化,因此,在高温下,稳定在较低pH值的物质将占主导地位。毫无疑问地证明,在低pH值的还原的含硫水热溶液中,在较大的温度和压力范围内,主要的Au(I)-氢硫化物络合物的化学计量为AuHS0。用于形成Au(I)-氢硫化物络合物AuHS0和Au(HS)(2)(-)的高温和高压平衡常数,与平衡Au-(s)+ H2S = AuHS0 + 1 / 2H(2(g))(1)和Au-(s)+ H2S + HS-- = Au(HS)(2)(-)+ 1 / 2H(2(g)),(2)已计算。反应(1)的非线性最小二乘拟合平衡常数从150°C / 500 bar时的log K-(1)= -6.81变化到200°C / 1500 bar时的最大值-5.90并在较高温度下再次减小( -7.83在400摄氏度/ 500巴下)。对于反应(2),会发生类似的变化:log K-(2)=在150摄氏度/ 500巴下为-1.45至250°C / 500巴下的-1.03和在400摄氏度/ 1500下为-1.75。将上述反应转化为等古伦形式后,可得出Au(I)-氢硫化物形成反应的热力学函数以及累积和逐步形成常数。不带电的配合物AuHS0的平衡常数表明,该物种在以低pH流体为特征的矿石沉积环境中,在金的运输和沉积中起着重要作用。 [参考:42]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号