...
【24h】

Differential rates of feldspar weathering in granitic regoliths

机译:花岗岩长石中长石风化的差异速率

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Differential rates of plagioclase and K-feldspar weathering commonly observed in bedrock and soil environments are examined in terms of chemical kinetic and solubility controls and hydrologic permeability. For the Panola regolith, in the Georgia Piedmont Province of southeastern United States, petrographic observations. coupled with elemental balances and Sr-87/Sr-86 ratios. indicate that plagioclase is bring converted to kaolinite at depths > 6 m in the granitic bedrock. K-feldspar remains pristine in the bedrock but subsequently weathers to kaolinite at the overlying saprolite. In contrast. both plagioclase and K-feldspar remain stable in granitic bedrocks elsewhere in Piedmont Province such as Davis Run, Virginia, where feldspars weather concurrently in an overlying thick saprolite sequence. Kinetic rate constants, mineral surface areas, and secondary hydraulic conductivities are fitted to feldspar losses with depth in the Panola and Davis Run regoliths using a time-depth computer spreadsheet model. The primary hydraulic conductivities, describing the rates of meteoric water penetration into the pristine granites, are assumed to be equal to the propagation rates of weathering fronts, which, based on cosmogenic isotope dating. are 7 m/10(6) yr for the Panola regolith and 4 m/10(6) yr for the Davis Run regolith. Best fits in the calculations indicate that the kinetic rate constants for plagioclase in both regoliths art: factors of two to three times faster than K-feldspar, which is in agreement with experimental findings. However. the range for plagioclase and K-feldspar rates (k(r) = 1.5 X 10(-17) to 2.8 X 10(-16) mol m (2) s(-1)) is three to four orders of magnitude lower than for that for experimental feldspar dissolution rates and are among the slowest yet recorded for natural feldspar weathering. Such slow rates are attributed to the relatively old geomorphic ages of the Panola and Davis Run regoliths. implying that mineral surface reactivity decreases significantly with time. Differential feldspar weathering in the low-permeability Panola bedrock environment is more dependent on relative feldspar solubilities than on differences in kinetic reaction rates. Such weathering is very sensitive to primary and secondary hydraulic conductivities (q(p) and q(s)). which control both the fluid volumes passing through the regolith and the thermodynamic saturation of the feldspars. Bedrock permeability is primarily intragranular and is created by internal weathering of networks of interconnected plagioclase phenocrysts. Saprolite permeability is principally intergranular and is the result of dissolution of silicate phases during isovolumetric weathering, A secondary to primary hydraulic conductivity ratio of q(s)/q(p) = 150 in the Panola bedrock results in kinetically controlled plagioclase dissolution but thermodynamically inhibited K-feldspar reaction. This result is in accord with calculated chemical saturation states for groundwater sampled in the Panola Granite. In contrast, greater secondary conductivities in the Davis Run saprolite, q(s)/q(p) = 800, produces both kinetically controlled plagioclase and K-feldspar dissolution. Faster plagioclase reaction, leading to bedrock weathering in the Panola Granite but not at Davis Run. is attributed to a higher anorthite component of the plagioclase and a wetter and warmer climate, In addition, the Panola Granite has an abnormally high content of disseminated calcite, the dissolution of which precedes the plagioclase weathering front, thus creating additional secondary permeability. Copyright (C) 2001 Elsevier Science Ltd. [References: 90]
机译:根据化学动力学和溶解度控制以及水文渗透率,研究了在基岩和土壤环境中通常观察到的斜长石和钾长石风化的差异速率。对于Panola岩体,在美国东南部的乔治亚州皮埃蒙特省进行岩相学观测。加上元素平衡和Sr-87 / Sr-86比率。表明在花岗岩基岩中,斜长石在> 6 m的深度处转化为高岭石。钾长石在基岩中保持原始状态,但随后在上覆的腐泥土中风化成高岭石。相反。斜长石和钾长石在皮埃蒙特省其他地区的花岗岩基岩中都保持稳定,例如弗吉尼亚州的戴维斯润,长石同时以覆盖的厚腐泥土序列同时风化。使用时间深度计算机电子表格模型,将动力学速率常数,矿物表面积和次要水力传导率与Panola和Davis Run块岩中的长石损失进行深度拟合。假定描述宇宙流水渗入原始花岗岩的速率的主要水力传导率与基于宇宙成因同位素测年的风化锋面的传播速率相同。 Panola Regolith为7 m / 10(6)年,Davis Run Regolith为4 m / 10(6)年。计算中的最佳拟合表明两种斜纹岩中斜长石的动力学速率常数:因子比钾长石快2至3倍,这与实验结果相符。然而。斜长石和钾长石比率的范围(k(r)= 1.5 X 10(-17)至2.8 X 10(-16)mol m(2)s(-1))比其低三到四个数量级对于实验中的长石溶解速率而言,是最慢的,而对于自然长石风化却是有记录的。如此缓慢的速度归因于Panola和Davis Run块石的相对古老的地貌年龄。暗示矿物表面反应性随时间显着降低。在低渗透率Panola基岩环境中,不同的长石风化作用更取决于相对的长石溶解度,而不是动力学反应速率的差异。这种风化对一次和二次水力传导率(q(p)和q(s))非常敏感。它既可以控制流经硬质岩的流体量,又可以控制长石的热力学饱和度。基岩渗透率主要是颗粒内的,是由相互连接的斜长石隐晶石网络的内部风化作用产生的。腐泥土的渗透性主要是粒间的,并且是等体积风化过程中硅酸盐相溶解的结果。在Panola基岩中,次要的水力传导率q(s / q(p)= 150)导致动力学控制的斜长石溶解,但热力学抑制钾长石反应。该结果与Panola花岗岩中采样的地下水的化学饱和状态相符。相反,在Davis Run腐泥土中更高的次生电导率q(s)/ q(p)= 800,会同时产生动力学控制的斜长石和钾长石溶解。斜长石反应加快,导致Panola花岗岩中的基岩风化,但在Davis Run中却没有。归因于斜长石中较高的钙长石成分和湿润和温暖的气候。此外,Panola花岗石中的方解石含量异常高,其溶解先于斜长石风化前沿,从而产生了更高的次生渗透率。版权所有(C)2001 Elsevier Science Ltd. [参考:90]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号