...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Kinetics and mechanism of forsterite dissolution at 25 degrees C and pH from 1 to 12
【24h】

Kinetics and mechanism of forsterite dissolution at 25 degrees C and pH from 1 to 12

机译:镁橄榄石在25摄氏度和pH值为1至12时溶解的动力学和机理

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The forward dissolution rate of San Carlos forsterite Fo(91) was measured at 25 degrees C in a mixed-flow reactor as a function of pH (1 to 12), ionic strength (0.001 to 0.1 M), Sigma CO2 (0 to 0.05 M), aqueous magnesium (10(-6) to 0.05 M) and silica (10(-6) to 0.001 M) concentrations. In CO2-free solutions, the rates decrease with increasing pH at 1 less than or equal to pH less than or equal to 8 with a slope close to 0.5. At 9 less than or equal to pH less than or equal to 12, the rates continue to decrease but with a smaller slope of similar to 0.1. Addition of silica to solution at pH above 8.8 leads to reduction of up to 5 times in the dissolution rate, Magnesium ions have no effect on forsterite dissolution rate at pH from 3 to 6 and 10(-5) < [Mg2+](tot) < 0.04 M. Aqueous carbonate ions strongly inhibit dissolution in alkaline solutions when aCO(3)(2-) > 10(-4) M. In acidic and slightly alkaline solutions, forsterite dissolution is controlled by the decomposition of a silica-rich/magnesium-deficient protonated precursor complex. This complex is formed by exchange of two hydrogen ions for a Mg atom on the forsterite surface followed by polymerization of partially protonated SiO4 tetrahedra and rate-controlling H+ penetration into the leached layer and its adsorption on silica dimers. This accounts for the observed 0.5 order dependence of dissolution rate on H+ activity. In alkaline solutions, dissolution is controlled by the decomposition of Mg hydrated sites in a Mg-rich layer formed by silica preferential release. Within this conceptual model, forsterite forward rate of dissolution can be accurately described for a wide variety of solution compositions assuming two parallel reactions occurring at silica-rich and hydrated Mg surface sites: R+ (mol/cm(2)/s) = 2.38 x 10(-11) {>Si2O-H+ } + 1.62 x 10(-10) { >MgOH2+} where {>i} stands for surface species concentration (mol/m(2)). This equation describes the weak dependence of dissolution rates on pH in alkaline solutions and the inhibiting effect of carbonate ions and dissolved silica when the hydration of surface Mg atoms with formation of >MgOH2+ is the rate-controlling step for dissolution. It follows that the decrease of forsterite dissolution rate with increasing carbonate concentration at pH greater than or equal to 9 in natural aquatic systems results in a decrease of atmospheric CO2 consumption, i.e., unlike for feldspars, there is a negative feedback between pCO(2) and forsterite weathering rate. This should be taken into account when modeling the effect of mafic mineral weathering on CO2 global balance. Copyright (C) 2000 Elsevier Science Ltd. [References: 42]
机译:在25°C下在混流反应器中测量了San Carlos镁橄榄石Fo(91)的正向溶解速率,它是pH(1至12),离子强度(0.001至0.1 M),Sigma CO2(0至0.05)的函数M),镁水溶液(10(-6)至0.05 M)和二氧化硅(10(-6)至0.001 M)的浓度。在不含CO2的溶液中,当pH值小于等于1或pH小于等于8且斜率接近0.5时,速率会降低。在9小于或等于pH小于或等于12时,速率继续降低,但斜率较小,接近0.1。在pH高于8.8的溶液中添加二氧化硅会导致溶解速率降低多达5倍,镁离子在pH为3至6和10(-5)<[Mg2 +](tot)时对镁橄榄石溶解速率没有影响<0.04M。当aCO(3)(2-)> 10(-4)M时,碳酸根离子强烈抑制在碱性溶液中的溶解。在酸性和弱碱性溶液中,镁橄榄石的溶解受富二氧化硅/镁缺乏的质子化前体复合物。通过在镁橄榄石表面上将两个氢离子交换成Mg原子,然后聚合部分质子化的SiO4四面体,并控制H +渗入浸出层的速度及其在二氧化硅二聚体上的吸附,形成这种络合物。这解释了溶解速率对H +活性的0.5阶依赖性。在碱性溶液中,溶解是通过二氧化硅优先释放形成的富镁层中镁水合位点的分解来控制的。在此概念模型中,假定在富二氧化硅和水合Mg表面位点发生两个平行反应,R +(mol / cm(2)/ s)= 2.38 x,可以准确描述多种溶液成分的镁橄榄石正向溶解速率: 10(-11){> Si2O-H +} + 1.62 x 10(-10){> MgOH2 +},其中{> i}代表表面物质浓度(mol / m(2))。该方程式描述了当溶液中MgOH2 +形成的表面Mg原子水合是溶解的速率控制步骤时,碱溶液中溶解速率对pH的依赖性较弱,以及碳酸根离子和溶解的二氧化硅的抑制作用。由此可见,在天然水生系统中,pH大于或等于9时,碳酸钙浓度的增加导致镁橄榄石溶解速率的降低导致大气CO2消耗的减少,即,与长石不同,pCO(2)之间存在负反馈和镁橄榄石的风化率。在建模镁铁矿矿物风化对CO2总体平衡的影响时,应考虑到这一点。版权所有(C)2000 Elsevier Science Ltd. [引用:42]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号