首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Thermodynamic properties of solutions in metastable systems under negative or positive pressures
【24h】

Thermodynamic properties of solutions in metastable systems under negative or positive pressures

机译:负压或正压下亚稳体系中溶液的热力学性质

获取原文
获取原文并翻译 | 示例
           

摘要

Metastable systems are created when the interface between the atmosphere (in which P-atm = I bar) and water forms a spherical meniscus either concave toward the air (water filling capillaries, wherein P-water < P-atm) or convex toward the air (fog water droplet, wherein P-water > P-atm). Soil water, undergoing negative pressure ("capillary potential") remains bound to the solid matrix (instead of flowing downward) by the capillary meniscus, concave toward the undersaturated dry atmosphere. The positive counterpart of tensile water in soils is the pressurized water contained in fine droplets suspended in oversaturated humid air, as in clouds. All these systems are anisobaric domains the phases of which have different pressures. Geochemical consequences of such characteristics are assessed here by calculating the consequences of the positive or negative water potential on the equilibrium constants of reactions taking place in stretched or pressurized aqueous solutions. Thermodynamic properties of aqueous species are obtained by using the TH model, used explicitly for positive pressures but extrapolated to negative ones for soil solutions. It appears that soil water dissolves gases, offering an alternative explanation of the observed enrichment of atmospheric noble gases in groundwater and of carbonic gas in the unsaturated zone below the root zone. Water droplets obviously show the opposite behavior, that is, a decreasing dissolutive capability with decreasing droplet size (water pressure increases), inducing some climatic consequences. An application of this approach to the solid-solution equilibria is performed by comparing experimental solubility of amorphous silica in unsaturated media on the one hand, to theoretical calculations taking account of the negative water pressure on the other hand. This comparison outlines the potential complexity of anisobaric situations in nature and the necessity to develop a suitable approach for solid pressure. Copyright (C) 2003 Elsevier Science Ltd. [References: 57]
机译:当大气(其中P-atm = I bar)与水之间的界面形成向空气凹面(充水的毛细管,其中P-水 P-atm)。经受负压(“毛细管电势”)的土壤水通过毛细管弯液面保持向固体基质的束缚(而不是向下流动),向不饱和的干燥大气凹陷。土壤中拉伸水的正向对应物是悬浮在过饱和的潮湿空气(如云)中的细小液滴中所含的加压水。所有这些系统都是等压域,其相具有不同的压力。通过计算正或负水势对在拉伸或加压水溶液中发生的反应平衡常数的影响,可以评估此​​类特征的地球化学后果。通过使用TH模型获得水性物种的热力学性质,该模型明确用于正压,但对于土壤溶液则外推至负压。似乎土壤中的水溶解了气体,这为观察到的地下水中大气稀有气体的富集和根区下方非饱和带中的碳酸气的富集提供了另一种解释。水滴显然表现出相反的行为,即溶解能力降低,水滴尺寸减小(水压增加),从而导致一些气候后果。通过一方面将无定形二氧化硅在不饱和介质中的实验溶解度与考虑了负水压的理论计算进行比较,将这种方法应用于固溶平衡。这种比较概述了自然界中等压情况的潜在复杂性,以及为固体压力开发合适方法的必要性。版权所有(C)2003 Elsevier Science Ltd. [参考:57]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号