首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Nanoparticles in natural systems II: The natural oxide fraction at interaction with natural organic matter and phosphate
【24h】

Nanoparticles in natural systems II: The natural oxide fraction at interaction with natural organic matter and phosphate

机译:天然系统中的纳米粒子II:与天然有机物和磷酸盐相互作用时的天然氧化物级分

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Information on the particle size and reactive surface area of natural samples and its interaction with natural organic matter (NOM) is essential for the understanding bioavailability, toxicity, and transport of elements in the natural environment. In part I of this series (Hiemstra et al., 2010), a method is presented that allows the determination of the effective reactive surface area (A, m(2)/g Soil) of the oxide particles of natural samples which uses a native probe ion (phosphate) and a model oxide (goethite) as proxy. In soils, the natural oxide particles are generally embedded in a matrix of natural organic matter (NOM) and this will affect the ion binding properties of the oxide fraction. A remarkably high variation in the natural phosphate loading of the oxide surfaces (Gamma, mu mol/m(2)) is observed in our soils and the present paper shows that it is due to surface complexation of NOM, acting as a competitor via site competition and electrostatic interaction. The competitive interaction of NOM can be described with the charge distribution (CD) model by defining a NOM surface species. The interfacial charge distribution of this NOM surface species can be rationalized based on calculations done with an evolved surface complexation model, known as the ligand and charge distribution (LCD) model. An adequate choice is the presence of a charge of -1 v.u. at the 1-plane and -0.5 v.u. at the 2-plane of the electrical double layer used (Extended Stern layer model). The effective interfacial NOM adsorption can be quantified by comparing the experimental phosphate concentration, measured under standardized field conditions (e.g. 0.01 M CaCl2), with a prediction that uses the experimentally derived surface area (A) and the reversibly bound phosphate loading (Gamma, mu mol/m(2)) of the sample (part I) as input in the CD model. Ignoring the competitive action of adsorbed NOM leads to a severe under-prediction of the phosphate concentration by a factor similar to 10 to 1000. The calculated effective loading of NOM is low at a high phosphate loading (Gamma) and vice versa, showing the mutual competition of both constituents. Both constituents in combination usually dominate the surface loading of natural oxide fraction of samples and form the backbone in modeling the fate of other (minor) ions in the natural environment. Empirically, the effective NOM adsorption is found to correlate well to the organic carbon content (OC) of the samples. The effective NOM adsorption can also be linked to DOC. For this, a Non-Ideal Competitive adsorption (NICA) model is used. DOC is found to be a major explaining factor for the interfacial loading of NOM as well as phosphate. The empirical NOM-OC relation or the parameterized NICA model can be used as an alternative for estimating the effective NOM adsorption to be implemented in the CD model for calculation of the surface complexation of field samples. The biogeochemical impact of the NOM-PO4 interaction is discussed.
机译:有关自然样品的粒径和反应表面积以及其与天然有机物(NOM)相互作用的信息对于理解自然环境中的生物利用度,毒性和元素运输至关重要。在本系列的第一部分(Hiemstra等人,2010)中,提出了一种方法,该方法可以确定天然样品氧化物颗粒的有效反应表面积(A,m(2)/ g土壤),使用天然探针离子(磷酸盐)和模型氧化物(针铁矿)作为代理。在土壤中,天然氧化物颗粒通常嵌入天然有机物(NOM)的基质中,这将影响氧化物级分的离子结合性能。在我们的土壤中观察到了氧化物表面的天然磷酸盐负载量(Gamma,μmol / m(2))的显着高变化,本论文表明这是由于NOM的表面络合所致,它通过位点充当竞争者竞争和静电相互作用。通过定义NOM表面物质,可以用电荷分布(CD)模型描述NOM的竞争相互作用。该NOM表面物质的界面电荷分布可以基于使用演化的表面络合模型(称为配体和电荷分布(LCD)模型)进行的计算来合理化。适当的选择是存在-1 v.u的电荷。在1平面和-0.5 v.u.在使用的电气双层的2平面上(扩展斯特恩层模型)。可以通过比较在标准现场条件下(例如0.01 M CaCl2)测量的实验磷酸盐浓度与使用实验得出的表面积(A)和可逆结合的磷酸盐负载量(Gamma,mu mol / m(2)的样品(第I部分)作为CD模型中的输入。忽略吸附的NOM的竞争作用会导致磷酸盐浓度的严重低估,近似为10到1000。在高磷酸盐负荷(Gamma)时,NOM的计算有效负荷较低,反之亦然,表明了相互之间的相互影响。两方的竞争。两种成分的组合通常会控制样品天然氧化物部分的表面负载,并在模拟自然环境中其他(次要)离子的命运时形成骨架。根据经验,发现有效的NOM吸附与样品的有机碳含量(OC)密切相关。有效的NOM吸附也可以与DOC连接。为此,使用了非理想竞争吸附(NICA)模型。发现DOC是NOM以及磷酸盐的界面负载的主要解释因素。经验NOM-OC关系或参数化的NICA模型可以用作估计CD模型中要实现的有效NOM吸附的替代方法,以计算田间样品的表面络合度。讨论了NOM-PO4相互作用的生物地球化学影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号