...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Structure of heavy metal sorbed birnessite. Part III: Results from powder and polarized extended X-ray absorption fine structure spectroscopy
【24h】

Structure of heavy metal sorbed birnessite. Part III: Results from powder and polarized extended X-ray absorption fine structure spectroscopy

机译:重金属吸附的水钠锰矿的结构。第三部分:粉末和偏振扩展X射线吸收精细结构光谱的结果

获取原文
获取原文并翻译 | 示例

摘要

The local structures of divalent Zn, Cu, and Pb sorbed on the phyllomanganate birnessite (Bi) have been studied by powder and polarized extended X-ray absorption fine structure (EXAFS) spectroscopy. Metal-sorbed birnessites (MeBi) were prepared at different surface coverages by equilibrating at pH 4 a Na-exchanged buserite (NaBu) suspension with the desired aqueous metal. Me/Mn atomic ratios were varied from 0.2% to 12.8% in ZnBi and 0.1 to 5.8% in PbBi. The ratio was equal to 15.6% in CuBi. All cations sorbed in interlayers on well-defined crystallographic sites, without evidence for sorption on layer edges or surface precipitation. Zn sorbed on the face of vacant layer octahedral sites (square), and shared three layer oxygens (O-layer) with three-layer Mn atoms (Mn-layer), thereby forming a tridentate corner-sharing (TC) interlayer complex (Zn-3O(layer)-square-3Mn(layer)). Zn-TC complexes replace interlayer Mn2+ (Mn-inter(2+)) and protons. Zn-TC and Mn-TC(inter)3+ together balance the layer charge deficit originating from Mn-layer(4+) vacancies, which amounts to 0.67 charge per total Mn according to the structural formula of hexagonal birnessite (HBi) at pH 4. At low surface coverage, zinc is tetrahedrally coordinated to three O-layer and one water molecule ((TC)-T-[IV] complex: (H2O)-Zn-[IV]-3O(layer)). At high loading, zinc is predominantly octahedrally coordinated to three O-layer and to three interlayer water molecules ((TC)-T-[VI] complex: 3(H2O)-Zn-[VI]-3O(layer)), as in chalcophanite ((ZnMn34+O7)-Zn-[VI].3H(2)O). Sorbed Zn induces the translation of octahedral layers from -a/3 to +a/3, and this new stacking mode allows strong H bonds to form between the Zn-[IV] complex on one side of the interlayer and oxygen atoms of the next Mn layer (O-next): O-next...(H2O)-Zn-[IV]-3O(layer). Empirical bond valence calculations show that O-layer and O-next are strongly undersaturated, and that Zn-[VI] provides better local charge compensation than Zn-[VI]. The strong undersaturation of O-layer and O-next results not only from Mn-layer(4+) vacancies, but also from Mn3+ for Mn4+ layer substitutions amounting to 0.11 charge per total Mn in HBi. As a consequence, Zn-[IV],Mn-layer(3+) and Mn-next(3+) form three-dimensional (3D) domains, which coexist with chalcophanite-like particles detected by electron diffraction. Cu2+ forms a Jahn-Teller distorted (TC)-T-[VI] interlayer complex formed of two oxygen atoms and two water molecules in the equatorial plane, and one oxygen and one water molecule in the axial direction. Sorbed Pb2+ is not oxidized to Pb4+ and forms predominantly (TC)-T-[VI] interlayer complexes. EXAFS spectroscopy is also consistent with the formation of tridentate edge-sharing ((TE)-T-[VI]) interlayer complexes (Pb-3O(layer)-3Mn), as in quenselite (Pb2+Mn3+O2OH). Although metal cations mainly sorb to vacant sites in birnessite, similar to Zn in chalcophanite, EXAFS spectra of MeBi systematically have a noticeably reduced amplitude. This higher short-range structural disorder of interlayer Me species primarily originates from the presence of Mn-layer(3+), which is responsible for the formation of less abundant interlayer complexes, such as ([IV])]Zn TC in ZnBi and Pb-[VI] TE in PbBi. Copyright (C) 2002 Elsevier Science Ltd. [References: 73]
机译:通过粉末和偏振扩展X射线吸收精细结构(EXAFS)光谱研究了页锰锰矿水钠锰矿(Bi)上吸附的二价Zn,Cu和Pb的局部结构。金属吸附的水钠锰矿(MeBi)可通过在pH值为4的条件下用所需的水性金属平衡Na交换的水钠锰矿(NaBu)悬浮液来制备在不同的表面覆盖率下。 Me / Mn原子比在ZnBi中为0.2%至12.8%,在PbBi中为0.1至5.8%。该比率等于CuBi中的15.6%。所有阳离子均吸附在明确定义的晶体学位置的中间层中,而没有证据表明在层边缘或表面沉淀上有吸附。 Zn吸附在空的八面体位置(正方形)的表面上,并与三层的Mn原子(Mn层)共享三层的氧(O层),从而形成三齿角共享(TC)的层间复合物(Zn -3O(层)-正方形-3Mn(层))。 Zn-TC络合物代替层间Mn2 +(Mn-inter(2+))和质子。 Zn-TC和Mn-TC(inter)3+共同平衡了源自Mn-层(4+)空位的层电荷不足,根据pH下六角水钠锰矿(HBi)的结构式,总计为每总Mn 0.67电荷4.在低表面覆盖率下,锌四面体配位到三个O层和一个水分子((TC)-T- [IV]配合物:(H2O)-Zn- [IV] -3O(层))。在高负荷下,锌主要通过八面体配位到三个O层和三个层间水分子((TC)-T- [VI]配合物:3(H2O)-Zn- [VI] -3O(layer)),在黄铜矿((ZnMn34 + O7)-Zn- [VI] .3H(2)O)中。吸收的Zn诱导八面体层从-a / 3到+ a / 3的平移,这种新的堆叠模式允许在中间层一侧的Zn- [IV]配合物与另一侧的氧原子之间形成强H键Mn层(O-下):O-下...(H 2 O)-Zn- [IV] -3O(层)。经验键价计算表明,O层和O-next严重欠饱和,并且Zn- [VI]比Zn- [VI]提供更好的局部电荷补偿。 O层和O-next的强烈欠饱和不仅是由于Mn-层(4+)的空位,而且还因为Mn3 +取代了Mn4 +层而使HBi中的总Mn占0.11电荷。结果,Zn- [IV],Mn-层(3+)和Mn-next(3+)形成三维(3D)域,它们与通过电子衍射检测到的黄铜矿状颗粒共存。 Cu 2+形成Jahn-Teller变形(TC)-T- [VI]层间复合物,该层间复合物由赤道面中的两个氧原子和两个水分子以及轴向上的一个氧和一个水分子形成。吸附的Pb2 +不会被氧化为Pb4 +,并且主要形成(TC)-T- [VI]层间复合物。 EXAFS光谱学也与三齿边共享((TE)-T- [VI])层间复合物(Pb-3O(layer)-3Mn)的形成一致,如八角石(Pb2 + Mn3 + O2OH)。尽管金属阳离子主要吸附在水钠锰矿中的空位上,类似于黄铜矿中的Zn,但MeBi的EXAFS光谱系统地振幅明显降低。中间层Me物种的这种较高的短程结构紊乱主要是由于Mn-layer(3+)的存在而引起的,这是由于形成了较不丰富的中间层配合物,例如ZnBi和(Bi)中的([IV])] Zn TC。 PbBi中的Pb- [VI] TE。版权所有(C)2002 Elsevier Science Ltd. [参考:73]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号