...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >FELDSPAR DISSOLUTION IN ACIDIC AND ORGANIC SOLUTIONS - COMPOSITIONAL AND PH DEPENDENCE OF DISSOLUTION RATE
【24h】

FELDSPAR DISSOLUTION IN ACIDIC AND ORGANIC SOLUTIONS - COMPOSITIONAL AND PH DEPENDENCE OF DISSOLUTION RATE

机译:酸和有机溶液中的FELDSPAR溶解-溶解速率的组成和pH依赖

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The steady-state dissolution rates of plagioclase feldspars into inorganic acid solutions in a flow-through reactor increased with Al content of the mineral from 1.4 . 10(-11) mol Si/m(2)/s for albite to 5.6 . 10(-9) mol Si/m(2)/s for bytownite. A similar trend was observed for minerals dissolved in neutral solutions although the rates were lower. The results of these experiments are used to develop a simple empirical equation to describe the dissolution of tectosilicates (quartz + feldspars): R(H) = k(H)a(H+)(nH) where R(H) is the dissolution rate of tectosilicates in acid solution, a(H+) is the activity of H+ ion, and k(H) and n(H) are dependent on the aluminum fraction in the tectosilicate framework [Al/Al + Si]: log k(H) = -11.24 + 25.98* [Al/Al + Si](2) and n(H) = -0.052 + 4.23* [Al/Al + Si](2). This model, with its strong dependence on Al fraction, suggests that tectosilicate dissolution in acid solution results primarily from attack at Al sites at the mineral surface. In acidic oxalate solutions the steady-state dissolution rates were, in some cases, up to a factor of 10 higher than dissolution rates in inorganic solutions at the same pH and appeared to have a similar dependence on pH and mineral composition, at least away from the extremes in aluminum fraction (quartz and bytownite). On the basis of the results of the experiments with acidic oxalate and previous experiments showing a linear dependence of feldspar dissolution rate on organic ligand concentration, an empirical expression for the ligand-promoted component of tectosilicate dissolution rates as measured by silica release (R(L)) is proposed: R(L) = (kappa(H)(L) [L] - k(H))a(H+)(n) + R(H)(L) (Si) where the first term describes the effect of competitive proton and ligand attack at Al sites at the mineral surface leading to silica release to solution and R(H)(L)(Si) reflects the smaller rate of attack at Si sites (kappa(H)(L) is a factor depending on the ligand, [L] is the ligand concentration, k(H) and a(H+) are as given above, and n describes the pH dependence of ligand- and proton-promoted dissolution and is taken to be equal to n(H) away from the extremes of aluminum fraction). The strong dependence of dissolution rate in acidic organic solutions on aluminum fraction indicates that both protons and ligands attack the mineral surface at the same, presumably Al, sites. [References: 47]
机译:斜长石长石在流通式反应器中无机酸溶液中的稳态溶解速率随矿物中Al的含量从1.4增加而增加。 10(-11)mol Si / m(2)/ s的钠长石为5.6。 10(-9)摩尔Si / m(2)/ s,用于亚磷灰石。对于溶解在中性溶液中的矿物质,虽然比率较低,但观察到了类似的趋势。这些实验的结果用于建立一个简单的经验方程来描述硅酸盐(石英+长石)的溶解:R(H)= k(H)a(H +)(nH)其中R(H)是溶解速率酸溶液中的硅酸盐含量,a(H +)是H +离子的活性,k(H)和n(H)取决于硅酸盐硅酸盐骨架[Al / Al + Si]中的铝含量:log k(H) = -11.24 + 25.98 * [Al / Al + Si](2),n(H)=-0.052 + 4.23 * [Al / Al + Si](2)。该模型强烈依赖于Al组分,表明硅酸乙酯在酸性溶液中的溶解主要源于对矿物表面Al部位的侵蚀。在某些情况下,在酸性草酸盐溶液中,稳态溶解速率比在相同pH值下在无机溶液中的溶解速率高10倍,并且似乎对pH和矿物质成分具有相似的依赖性,至少远离铝含量的极端值(石英和亚铝矾土)。根据酸性草酸盐的实验结果和先前的实验结果表明,长石溶解速率与有机配体浓度呈线性相关关系,通过二氧化硅释放量测得的硅酸钾含量的配体促进成分的硅酸乙酯溶解速率的经验表达式(R(L ))建议:R(L)=(kappa(H)(L)[L]-k(H))a(H +)(n)+ R(H)(L)(Si),其中第一项描述竞争性质子和配体在矿物表面Al位点处的进攻导致二氧化硅释放到溶液中的作用,R(H)(L)(Si)反映了在Si位点处较小的进攻速率(kappa(H)(L)为一个取决于配体的因子,[L]是配体浓度,k(H)和a(H +)如上给出,n描述了配体和质子促进溶解的pH依赖性,并被认为等于n(H)远离铝分数的极限)。酸性有机溶液中溶解速率对铝部分的强烈依赖性表明,质子和配体都在相同的位置(大概是Al)攻击矿物表面。 [参考:47]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号