...
首页> 外文期刊>Experimental Thermal and Fluid Science: International Journal of Experimental Heat Transfer, Thermodynamics, and Fluid Mechanics >Effects of cooling temperature on heat pipe evaporator performance using an ideal fluid mixture in microgravity
【24h】

Effects of cooling temperature on heat pipe evaporator performance using an ideal fluid mixture in microgravity

机译:使用微重力下的理想流体混合物,冷却温度对热管蒸发器性能的影响

获取原文
获取原文并翻译 | 示例

摘要

The effect of cooling temperature on heat pipe performance has generally received little consideration. In this paper, we studied the performance of a Constrained Vapor Bubble (CVB) heat pipe using a liquid mixture of 94 vol%-pentane and 6 vol%-isohexane at different cooling temperatures in the microgravity environment of the International Space Station (ISS). Using a one-dimensional (1-D) heat transfer model developed in our laboratory, the heat transfer coefficient of the evaporator section was calculated and shown to decrease with increasing cooler temperature. Interestingly, the decreasing trend was not the same across the cooler settings studied in the paper. This trend corresponded with the change in the temperature profile along the cuvette. When the cooling temperature went from 0 to 20 degrees C, the temperature of the cuvette decreased monotonically from the heater end to the cooler end and the heat transfer coefficient decreased slowly from 456 to 401 (W m(-2) K-1) (at a rate of 2.75 W m(-2) K-2). However, when the cooling temperature increased from 25 to 35 degrees C, a minimum point formed in the temperature profile, and the heat transfer coefficient dramatically decreased from 355 to 236 (W m(-2)) (at a rate of 11.9 W m(-2) K-2). A similar change in decreasing trend was observed in the pressure gradient and liquid velocity profile. The reduced heat pipe performance at high cooling temperatures was consistent with the reduced evaporation which was indicated by the decreasing internal heat transfer and the increasing liquid film thickness along the cuvette as seen in the surveillance images. The result obtained is important for future heat pipe design because we now have a better understanding of the working temperature ranges of these devices. (C) 2016 Elsevier Inc. All rights reserved.
机译:通常很少考虑冷却温度对热管性能的影响。在本文中,我们研究了在国际太空站(ISS)的微重力环境下,使用94%(体积)戊烷和6%(体积)异己烷的混合液在不同冷却温度下产生的受限气泡(CVB)热管的性能。 。使用我们实验室开发的一维(1-D)传热模型,可以计算出蒸发器部分的传热系数,并显示随着冷却器温度的升高而降低。有趣的是,在本文研究的较冷设置中,下降趋势并不相同。这种趋势与沿试管的温度曲线的变化相对应。当冷却温度从0到20摄氏度时,比色杯的温度从加热器端到冷却器端单调降低,并且热传递系数从456缓慢降低到401(W m(-2)K-1)(以2.75 W m(-2)K-2的速率)。但是,当冷却温度从25摄氏度增加到35摄氏度时,在温度曲线中形成了一个最低点,传热系数从355急剧降低到236(W m(-2))(以11.9 W m (-2)K-2)。在压力梯度和液体速度曲线中观察到类似的下降趋势变化。在高冷却温度下热管性能降低与蒸发降低一致,这可以从内部传热的减少和沿比色皿的液膜厚度的增加来表示,如监视图像所示。获得的结果对于将来的热管设计非常重要,因为我们现在对这些设备的工作温度范围有了更好的了解。 (C)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号