首页> 外文期刊>Experimental Thermal and Fluid Science: International Journal of Experimental Heat Transfer, Thermodynamics, and Fluid Mechanics >Burning velocity and statistical flame front structure of turbulent premixed flames at high pressure up to 1.0 MPa
【24h】

Burning velocity and statistical flame front structure of turbulent premixed flames at high pressure up to 1.0 MPa

机译:高达1.0 MPa的高压下湍流预混火焰的燃烧速度和统计火焰前锋结构

获取原文
获取原文并翻译 | 示例
           

摘要

Statistical flame front structure of turbulent premixed flames at high pressure up to 1.0 MPa was measured on a nozzle-type Bunsen burner with OH-PLIF technique. Turbulent burning velocity, flame surface density and flame brush thickness, as well as the local curvature and radius of curvature were derived from the experimental OH-PLIF images. Turbulence-flame interaction was analyzed based on the geometric parameters combined with laminar flame properties and turbulence length scales. Results show that the flame wrinkles at high pressure are dominated by small scale cusps superimposed with large scale flame branches which is a general characteristic of the turbulent premixed flames at high pressure. S-T/S-L increases remarkably with u'/S-L, and the influence of elevated pressure on S-T/S-L is significant. This is mainly due to the increase of flame front area caused by the turbulence wrinkling. Flame surface density significantly increases with the increase of pressure indicating that there is a large amount of fine cusps and small wrinkles in the flame front at high pressure. This would be due to the enhancement of the flame instability represented by effective Lewis number Le(eff) and flame intrinsic instability scale l(i). With the increase of turbulence intensity, the Sigma at high pressure increases while slightly decreases at normal pressure. The most frequent length scale of the flame front moves to smaller value and the possibility increases with the increase of u'/S-L for all pressures. The effect of flame intrinsic instability on finer flame front at high pressure is mainly on the formation of a large number of convex structures which enlarge the effective contact surface between flame front and unburned reactants, resulting in the increase of S-T/S-L. (C) 2015 Elsevier Inc. All rights reserved.
机译:在带有OH-PLIF技术的喷嘴式本生灯上测量了高达1.0 MPa的高压下湍流预混火焰的统计火焰前部结构。湍流燃烧速度,火焰表面密度和火焰刷厚度以及局部曲率和曲率半径均来自实验OH-PLIF图像。基于几何参数,结合层流火焰特性和湍流长度尺度,分析了湍流-火焰相互作用。结果表明,高压下的火焰皱纹主要由小规模的尖头和大面积的火焰分支叠加而成,这是高压下湍流预混火焰的一般特征。 S-T / S-L随u'/ S-L显着增加,并且升高的压力对S-T / S-L的影响很大。这主要是由于湍流起皱引起的火焰前沿面积的增加。火焰表面密度随压力的增加而显着增加,表明在高压下,火焰前缘有大量的细小尖端和小皱纹。这将是由于有效刘易斯数Le(eff)和火焰固有不稳定性标度l(i)代表的火焰不稳定性的增强。随着湍流强度的增加,高压下的西格玛值增加,而常压下的西格玛值略有下降。在所有压力下,最常见的火焰前沿长度标度移到较小的值,并且可能性随着u'/ S-L的增加而增加。高压下火焰固有不稳定性对较细的火焰前锋的影响主要在于形成大量凸出结构,这些凸起结构扩大了火焰前锋与未燃烧反应物之间的有效接触面积,导致S-T / S-L的增加。 (C)2015 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号