首页> 外文期刊>Experimental Thermal and Fluid Science: International Journal of Experimental Heat Transfer, Thermodynamics, and Fluid Mechanics >Macro-to-microchannel transition in two-phase flow: Part 2 - Flow boiling heat transfer and critical heat flux
【24h】

Macro-to-microchannel transition in two-phase flow: Part 2 - Flow boiling heat transfer and critical heat flux

机译:两相流中从宏观到微通道的过渡:第2部分-沸腾传热和临界热通量

获取原文
获取原文并翻译 | 示例
           

摘要

This part of the paper presents the current experimental flow boiling heat transfer and CHF data acquired for R134a, R236fa and R245fa in single, horizontal channels of 1.03, 2.20 and 3.04. mm diameters over a range of experimental conditions. The aim of this study is to investigate the effects of channel confinement, heat flux, flow pattern, saturation temperature, subcooling and working fluid properties on the two-phase heat transfer and CHF. Experimentally, it was observed that the flow boiling heat transfer coefficients are a significant function of the type of two-phase flow pattern. Furthermore, the monotonically increasing heat transfer coefficients at higher vapor qualities, corresponding to annular flow, signifies convective boiling as the dominant heat transfer mechanism in these small scale channels. The decreasing heat transfer trend at low vapor qualities in the slug flow (coalescing bubble dominated regime) was indicative of thin film evaporation with intermittent dry patch formation and rewetting at these conditions. The coalescing bubble flow heat transfer data were well predicted by the three-zone model when setting the dryout thickness to the measured surface roughness, indicating for the first time a roughness effect on the flow boiling heat transfer coefficient in this regime. The CHF data acquired during the experimental campaign indicated the influence of saturation temperature, mass velocity, channel confinement and fluid properties on CHF but no influence of inlet subcooling for the conditions tested. When globally comparing the CHF values for R134a in the 0.51-3.04. mm diameter channels, a peak in CHF peak was observed lying in between the 0.79 (Co≈ 0.99) and 1.03 (Co≈ 0.78). mm channels. A new CHF correlation has been proposed involving the confinement number, Co that is able to predict CHF for R134a, R236fa and R245fa in single-circular channels, rectangular multichannels and split flow rectangular multichannels. In summary, the present flow boiling and CHF trends point to a macro-to-microscale transition as indicated by the results presented in Ong and Thome (2011) [1].
机译:本文的这一部分介绍了在单水平通道1.03、2.20和3.04中为R134a,R236fa和R245fa获得的当前实验沸腾传热和CHF数据。在一系列实验条件下的最大直径。本研究的目的是研究通道限制,热通量,流型,饱和温度,过冷和工作流体特性对两相传热和CHF的影响。从实验上观察到,沸腾传热系数是两相流型的重要函数。此外,在较高的蒸汽质量下,与环形流相对应的单调增加的传热系数表明,在这些小规模通道中,对流沸腾是主要的传热机制。在团状流(凝结气泡为主的状态)中,低蒸汽质量下的传热趋势不断下降,这表明薄膜蒸发并形成了间歇性干斑并在这些条件下重新润湿。当将干燥厚度设置为测得的表面粗糙度时,通过三区域模型可以很好地预测聚结气泡流动的传热数据,这首次表明在该状态下粗糙度对流动沸腾传热系数的影响。在实验过程中获得的CHF数据表明饱和温度,质量速度,通道限制和流体性质对CHF的影响,但在测试条件下对入口过冷没有影响。全局比较R1-3a的CHF值在0.51-3.04中。在直径较小的通道中,观察到CHF峰位于0.79(Co≈0.99)和1.03(Co≈0.78)之间。毫米通道。已经提出了一种新的CHF相关性,涉及限制数Co,它可以预测单圆形通道,矩形多通道和分流矩形多通道中R134a,R236fa和R245fa的CHF。总而言之,如Ong and Thome(2011)[1]中提出的结果所示,当前的流量沸腾和CHF趋势指向宏观到微观的转变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号