首页> 外文期刊>Experiments in Fluids: Experimental Methods and Their Applications to Fluid Flow >Time-resolved OCT-μPIV: A new microscopic PIV technique for noninvasive depth-resolved pulsatile flow profile acquisition
【24h】

Time-resolved OCT-μPIV: A new microscopic PIV technique for noninvasive depth-resolved pulsatile flow profile acquisition

机译:时间分辨OCT-μPIV:一种新的显微PIV技术,用于无创深度分辨脉动血流图采集

获取原文
获取原文并翻译 | 示例
           

摘要

In vivo acquisition of endothelial wall shear stress requires instantaneous depth-resolved whole-field pulsatile flow profile measurements in microcirculation. High-accuracy, quantitative and non-invasive velocimetry techniques are essential for emerging real-time mechanogenomic investigations. To address these research needs, a novel biological flow quantification technique, OCT-μPIV, was developed utilizing high-speed optical coherence tomography (OCT) integrated with microscopic Particle Image Velocimetry (lPIV). This technique offers the unique advantage of simultaneously acquiring blood flow profiles and vessel anatomy along arbitrarily oriented sagittal planes. The process is instantaneous and enables real-time 3D flow reconstruction without the need for computationally intensive image processing compared to state-of-the-art velocimetry techniques. To evaluate the line-scanning direction and speed, four sets of parametric synthetic OCT-μPIV data were generated using an in-house code. Based on this investigation, an in vitro experiment was designed at the fastest scan speed while preserving the region of interest providing the depth-resolved velocity profiles spanning across the width of a micro-fabricated channel. High-agreement with the analytical flow profiles was achieved for different flow rates and seed particle types and sizes. Finally, by employing blood cells as noninvasive seeding particles, in vivo embryonic vascular velocity profiles in multiple vessels were measured in the early chick embryo. The pulsatile flow frequency and peak velocity measurements were also acquired with OCT-μPIV, which agreed well with previous reported values. These results demonstrate the potential utility of this technique to conduct practical microfluidic and non-invasive in vivo studies for embryonic blood flows.
机译:在体内获取内皮壁剪切应力需要在微循环中即时进行深度分辨全场脉动流动轮廓测量。高精度,定量和无创测速技术对于新兴的实时机械基因组学研究至关重要。为了满足这些研究需求,利用高速光学相干断层扫描(OCT)和微观粒子图像测速技术(lPIV),开发了一种新颖的生物流量定量技术OCT-μPIV。该技术具有沿任意定向的矢状面同时获取血流轮廓和血管解剖结构的独特优势。与最先进的测速技术相比,该过程是瞬时的,可进行实时3D流程重建,而无需进行计算密集型图像处理。为了评估线扫描方向和速度,使用内部代码生成了四组参数化的合成OCT-μPIV数据。基于此调查,设计了一个体外实验,以最快的扫描速度进行,同时保留了感兴趣的区域,从而提供了跨越微细加工通道宽度的深度分辨速度分布图。对于不同的流速,种子颗粒类型和大小,获得了对分析流动曲线的高度认可。最后,通过将血细胞用作非侵入性播种颗粒,在雏鸡早期胚胎中测量了多个血管中的体内胚胎血管速度分布。还使用OCT-μPIV获得了脉动血流频率和峰值速度测量值,这与先前报道的值非常吻合。这些结果证明了该技术在进行实用的微流体和非侵入性体内研究胚胎血流方面的潜在实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号