首页> 外文期刊>Experiments in Fluids: Experimental Methods and Their Applications to Fluid Flow >Control of diffuser jet flow: turbulent kinetic energy and jet spreading enhancements assisted by a non-thermal plasma discharge
【24h】

Control of diffuser jet flow: turbulent kinetic energy and jet spreading enhancements assisted by a non-thermal plasma discharge

机译:控制扩散器射流:通过非热等离子体放电辅助湍流动能和射流扩散增强

获取原文
获取原文并翻译 | 示例
       

摘要

An axisymmetric air jet exhausting from a 22-degree- angle diffuser is investigated experimentally by particle image velocimetry (PIV) and stereo-PIV measurements. Two opposite dielectric barrier discharge (DBD) actuators are placed along the lips of the diffuser in order to force the mixing by a co-flow actuation. The electrohydrodynamic forces generated by both actuators modify and excite the turbulent shear layer at the diffuser jet exit. Primary air jet velocities from 10 to 40 m/s are studied (Reynolds numbers ranging from 3.2 to 12.8 x 10(4)), and baseline and forced flows are compared by analysing streamwise and cross-stream PIV fields. The mixing enhancement in the near field region is characterized by the potential core length, the centreline turbulent kinetic energy (TKE), the integrated value of the TKE over various slices along the jet, the turbulent Reynolds stresses and the vorticity fields. The time-averaged fields demonstrate that an effective increase in mixing is achieved by a forced flow reattachment along the wall of the diffuser at 10 m/s, whereas mixing enhancement is realized by excitation of the coherent structures for a primary velocity of 20 and 30 m/s. The actuation introduces two pairs of contra-rotating vortices above each actuator. These structures entrain the higher speed core fluid toward the ambient air. Unsteady actuations over Strouhal numbers ranging from 0.08 to 1 are also studied. The results suggest that the excitation at a Strouhal number around 0.3 is more effective to enhance the turbulence kinetic energy in the near-field region for primary jet velocity up to 30 m/s.
机译:通过颗粒图像测速(PIV)和立体PIV测量实验研究了从22度角扩散器排出的轴对称空气射流。沿着扩散器的唇缘放置两个相对的介电势垒放电(DBD)致动器,以通过并流致动来强制混合。由两个致动器产生的电流体动力改变并激发了扩压器射流出口处的湍流剪切层。研究了从10到40 m / s的主要喷气速度(雷诺数范围从3.2到12.8 x 10(4)),并且通过分析流向和跨流PIV场来比较基线流量和强制流量。近场区域的混合增强特征在于潜在的核心长度,中心线湍动能(TKE),沿射流的各个层上的TKE积分值,湍动的雷诺应力和涡度场。时间平均场表明,通过以10 m / s的速度沿扩散器壁进行强制流动重新附着,可以有效地提高混合效果,而对于20和30的主速度,通过激发相干结构,可以实现混合效果的增强。多发性硬化症。该致动在每个致动器上方引入两对反向旋转的涡流。这些结构将高速岩心流体夹带到环境空气中。还研究了Strouhal数在0.08到1之间的非稳态致动。结果表明,对于高达30 m / s的一次喷射速度,以0.3的Strouhal数激发更有效地增强了近场区域的湍动能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号