...
【24h】

Generation mechanism of micro-bubbles in a pressurized dissolution method

机译:加压溶解法中微气泡的产生机理

获取原文
获取原文并翻译 | 示例
           

摘要

Micro-bubbles are in use in many industrial fields such as water treatment, purification of lake water, chemical engineering, washing processes and housing equipment by virtues of their large interfacial area concentration and long residence time in liquid. A pressurized dissolution method based on decompression of liquid with dissolved gas is one of promising methods for generating fine micro-bubbles at high number density. Since the mechanism of micro-bubble generation is not clarified yet, design and improvement of micro-bubble generators are based on trial and error. In this study, effects of liquid volume flux at a decompression nozzle and dissolved gas concentration in the upstream region of the nozzle on diameter and number density of generated micro-bubbles are examined to understand generation mechanism of micro-bubbles in a pressurized dissolution method. The diameter and the number density of micro-bubbles are measured by using phase Doppler anemometry (PDA) in the downstream region of the nozzle, and the flow patterns in the nozzle are visualized by using a high-speed camera. The experimental results show that diameter and number density of generated micro-bubbles depend on cavitation pattern at the nozzle, and that cavitation bubbles containing not only vapor but also non-condensable gas become micro-bubbles due to their shrink caused by condensation of the vapor in the downstream region of the nozzle. (C) 2014 Elsevier Inc. All rights reserved.
机译:微气泡由于其大的界面面积浓度和在液体中的长停留时间而在许多工业领域中使用,例如水处理,湖水净化,化学工程,洗涤过程和房屋设备。基于用溶解气体对液体进行减压的加压溶解方法是用于以高数密度产生细微气泡的有前途的方法之一。由于微气泡产生的机理尚不清楚,因此微气泡发生器的设计和改进是基于反复试验的。在这项研究中,研究了减压喷嘴处的液体通量和喷嘴上游区域的溶解气体浓度对产生的微气泡的直径和数量密度的影响,以了解加压溶解方法中微气泡的生成机理。通过在喷嘴的下游区域中使用相位多普勒风速计(PDA)来测量微气泡的直径和数量密度,并通过使用高速相机来可视化喷嘴中的流动模式。实验结果表明,所产生的微气泡的直径和数量密度取决于喷嘴处的空化模式,并且不仅包含蒸气而且包含非冷凝性气体的空化气泡由于由蒸气凝结而引起的收缩而变为微气泡。在喷嘴的下游区域。 (C)2014 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号