首页> 外文期刊>Gene: An International Journal Focusing on Gene Cloning and Gene Structure and Function >Network analysis of S. aureus response to ramoplanin reveals modules for virulence factors and resistance mechanisms and characteristic novel genes
【24h】

Network analysis of S. aureus response to ramoplanin reveals modules for virulence factors and resistance mechanisms and characteristic novel genes

机译:对金黄色葡萄球菌对雷莫拉宁的反应的网络分析揭示了毒力因子,耐药机制和特征性新基因的模块

获取原文
获取原文并翻译 | 示例
           

摘要

Staphylococcus aureus is a major human pathogen and ramoplanin is an antimicrobial attributed for effective treatment. The goal of this study was to examine the transcriptomic profiles of ramoplanin sensitive and resistant S. aureus to identify putative modules responsible for virulence and resistance-mechanisms and its characteristic novel genes. The dysregulated genes were used to reconstruct protein functional association networks for virulence-factors and resistance-mechanisms individually. Strong link between metabolic-pathways and development of virulence/resistance is suggested. We identified 15 putative modules of virulence factors. Six hypothetical genes were annotated with novel virulence activity among which SACOL0281 was discovered to be an essential virulence factor EsaD. The roles of MazEF toxin-antitoxin system, SACOL0202/SACOL0201 two-component system and that of amino-sugar and nucleotide-sugar metabolism in virulence are also suggested. In addition, 14 putative modules of resistance mechanisms including modules of ribosomal protein-coding genes and metabolic pathways such as biotin-synthesis, TCA-cycle, riboflavin-biosynthesis, peptidoglycan-biosynthesis etc. are also indicated. (C) 2015 Elsevier B.V. All rights reserved.
机译:金黄色葡萄球菌是主要的人类病原体,而雷莫拉宁是一种有效治疗的抗菌药物。这项研究的目的是检查对雷莫拉宁敏感和耐药的金黄色葡萄球菌的转录组谱,以鉴定负责毒力和耐药机制的推定模块及其特征性新基因。失调的基因被用于分别构建针对毒力因子和抗性机制的蛋白质功能关联网络。建议代谢途径与毒力/抗性的发展之间存在紧密联系。我们确定了15个推定的毒性因子模块。六个假设基因带有新的毒力活性,其中SACOL0281被发现是必需毒力因子EsaD。还提出了MazEF毒素-抗毒素系统,SACOL0202 / SACOL0201两组分系统以及氨基糖和核苷酸糖代谢在毒力中的作用。另外,还指出了14种推测的抗性机制模块,包括核糖体蛋白编码基因模块和生物素合成,TCA循环,核黄素生物合成,肽聚糖生物合成等代谢途径。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号