首页> 外文期刊>GAMM-Mitteilungen >Crystal plasticity based modeling of time and scale dependent behavior of thin films
【24h】

Crystal plasticity based modeling of time and scale dependent behavior of thin films

机译:基于晶体可塑性的时间和尺度相关行为的薄膜建模

获取原文
获取原文并翻译 | 示例
           

摘要

The micro and sub-micro scale dimensions of the components of modern high-tech products pose challenging engineering problems that require advanced tools to tackle them. An example hereof is time dependent strain recovery, here referred to as anelasticity, which is observed in metallic thin film components of RF-MEMS switches. Moreover, it is now well known that the properties of a thin film material strongly depend on its geometrical dimensions through so-called size effects. A strain gradient crystal plasticity formulation (SGCP) was recently proposed [1–4], involving a back stress in terms of strain gradients capturing the lattice curvature effect. In the present work, the SGCP model is used in a realistic simulation of electrostatic bending of a free standing thin film beam made of either a pure fcc metal or a particle strengthened Al-Cu alloy. The model capabilities to describe the anelastic and plastic behavior of metallic thin films in comparison with experimentally available data are thereby assessed. Simulation results show that the SGCP model is able to predict a macroscopic strain recovery over time following the load removal. The amount of the anelastic relaxation and the accompanying relaxation times result from the rate dependent modeling approach, the basis of which is phenomenological only. The SGCP model is not fully capable of describing the permanent deformations in an alloy thin beam as observed in electrostatic experiments. Hence, to incorporate realistic time constants and the influence of the microstructure into the mechanical behavior of the thin film material, an improved constitutive law for crystallographic slip is necessary within the SGCP formulation.
机译:现代高科技产品的组件的微观和亚微观尺度尺寸带来了具有挑战性的工程问题,需要先进的工具来解决。其示例是随时间变化的应变恢复,在此称为无弹性,这是在RF-MEMS开关的金属薄膜组件中观察到的。而且,现在众所周知,薄膜材料的性能通过所谓的尺寸效应强烈地取决于其几何尺寸。最近提出了一种应变梯度晶体可塑性公式(SGCP)[1-4],该应变涉及捕获晶格曲率效应的应变梯度所涉及的背应力。在当前的工作中,SGCP模型用于由纯fcc金属或颗粒增强的Al-Cu合金制成的独立式薄膜梁的静电弯曲的真实模拟。从而评估了描述金属薄膜的弹性和塑性行为与实验可用数据相比的模型能力。仿真结果表明,SGCP模型能够预测载荷去除后随时间变化的宏观应变恢复。非弹性弛豫的量和伴随的弛豫时间是由速率依赖的建模方法产生的,其基础仅是现象学的。 SGCP模型不能完全描述静电实验中观察到的合金细梁中的永久变形。因此,为了将实际的时间常数和微观结构的影响纳入薄膜材料的机械性能中,在SGCP配方中有必要改进结晶滑移的本构定律。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号