...
首页> 外文期刊>Extremophiles: Life under extreme conditions >Archaeal and bacterial communities of heavy metal contaminated acidic waters from zinc mine residues in Sepetiba Bay
【24h】

Archaeal and bacterial communities of heavy metal contaminated acidic waters from zinc mine residues in Sepetiba Bay

机译:Sepetiba湾锌矿渣中重金属污染酸性水的古细菌和细菌群落

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Mining of metallic sulfide ore produces acidic water with high metal concentrations that have harmful consequences for aquatic life. To understand the composi_tion and structure of microbial communities in acid mine drainage (AMD) waters associated with Zn mine tailings, molecular diversity of 16S genes was examined using a PCR, cloning, and sequencing approach. A total of 78 operational taxonomic units (OTUs) were obtained from samples collected at five different sites in and around mining residues in Sepetiba Bay, Brazil. We analyzed metal concentration, physical, chemical, and microbiological parameters related to prokaryotic diversity in low metal impacted compared to highly polluted environments with Zn at level of gram per liter and Cd-Pb at level of micro_gram per liter. Application of molecular methods for community structure analyses showed that Archaea and Bacteria groups present a phylogenetic relationship with uncultured environmental organisms. Phylogenetic analysis revealed that bacteria present at the five sites fell into seven known divisions,__-Proteobacteria (13.4%), __-Proteobac_teria (16.3%), __-Proteobacteria (4.3%), Sphingobacteriales (4.3%), Actinobacteria (3.2%) Acidobacteria (2.1%), Cyanobacteria (11.9%), and unclassified bacteria (44.5%). Almost all archaeal clones were related to uncultivated Crenarchaeota species, which were shared between high impacted and low impacted waters. Rarefaction curves showed that bacterial groups are more diverse than archaeal groups while the overall prokaryotic biodiversity is lower in high metal impacted environments than in less polluted habitats. Knowledge of this microbial community structure will help in understanding prokaryotic diversity, biogeog_raphy, and the role of microorganisms in zinc smelting AMD generation and perhaps it may be exploited for environmental remediation procedures in this area.
机译:金属硫化矿的开采会产生高浓度金属的酸性水,会对水生生物造成有害影响。为了了解与锌矿尾矿有关的酸性矿山排水(AMD)水中微生物群落的组成和结构,使用PCR,克隆和测序方法检查了16S基因的分子多样性。从巴西Sepetiba湾的采矿残渣及其附近的五个不同地点采集的样本中,总共获得了78个操作生物分类单位(OTU)。我们分析了与高污染环境(锌含量为每克克数升,镉镉含量为每升克数)相比的低污染金属中与原核生物多样性有关的金属浓度,物理,化学和微生物学参数。分子方法在社区结构分析中的应用表明,古细菌和细菌群与未培养的环境生物存在系统发育关系。系统发育分析表明,存在于这五个位置的细菌分为七个已知的区,__-变形杆菌(13.4%),__-变形杆菌(16.3%),__-变形杆菌(4.3%),鞘氨醇(4.3%),放线菌(3.2%)。 )酸性细菌(2.1%),蓝细菌(11.9%)和未分类细菌(44.5%)。几乎所有古细菌克隆都与未栽培的Crenarchaeota物种有关,它们在高影响和低影响的水域之间共享。重熔曲线表明,细菌群体比古细菌群体更为多样化,而在高金属影响环境中,原核生物的总体生物多样性却比污染程度较低的生境中的生物多样性低。了解这种微生物群落结构将有助于理解原核生物多样性,生物地理学以及微生物在锌冶炼AMD产生中的作用,并且也许可以用于该领域的环境修复程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号