...
首页> 外文期刊>Experimental Eye Research >Assessment of retinal ganglion cell damage in glaucomatous optic neuropathy: Axon transport, injury and soma loss
【24h】

Assessment of retinal ganglion cell damage in glaucomatous optic neuropathy: Axon transport, injury and soma loss

机译:青光眼视神经病变中视网膜神经节细胞损伤的评估:轴突运输,损伤和躯体损失

获取原文
获取原文并翻译 | 示例

摘要

Glaucoma is a disease characterized by progressive axonal pathology and death of retinal ganglion cells (RGCs), which causes structural changes in the optic nerve head and irreversible vision loss. Several experimental models of glaucomatous optic neuropathy (GUN) have been developed, primarily in non-human primates and, more recently and commonly, in rodents. These models provide important research tools to study the mechanisms underlying glaucomatous damage. Moreover, experimental GUN provides the ability to quantify and monitor risk factors leading to RGC loss such as the level of intraocular pressure, axonal health and the RGC population. Using these experimental models we are able to gain a better understanding of GUN, which allows for the development of potential neuroprotective strategies. Here we review the advantages and disadvantages of the relevant and most often utilized methods for evaluating axonal degeneration and RGC loss in GUN. Axonal pathology in GUN includes functional disruption of axonal transport (AT) and structural degeneration. Horseradish peroxidase (HRP), rhodamine-B-isothiocyanate (RITC) and cholera toxin-B (CTB) fluorescent conjugates have proven to be effective reporters of AT. Also, immunohistochemistry (IHC) for endogenous AT-associated proteins is often used as an indicator of AT function. Similarly, structural degeneration of axons in GUN can be investigated via changes in the activity and expression of key axonal enzymes and structural proteins. Assessment of axonal degeneration can be measured by direct quantification of axons, qualitative grading, or a combination of both methods. RGC loss is the most frequently quantified variable in studies of experimental GUN. Retrograde tracers can be used to quantify RGC populations in rodents via application to the superior colliculus (SC). In addition, in situ IHC for RGC-specific proteins is a common method of RGC quantification used in many studies. Recently, transgenic mouse models that express fluorescent proteins under the Thy-1 promoter have been examined for their potential to provide specific and selective labeling of RGCs for the study of GUN. While these methods represent important advances in assessing the structural and functional integrity of RGCs, each has its advantages and disadvantages; together they provide an extensive toolbox for the study of GUN. (C) 2015 Elsevier Ltd. All rights reserved.
机译:青光眼是一种以进行性轴索病理和视网膜神经节细胞(RGCs)死亡为特征的疾病,其引起视神经头的结构变化和不可逆的视力丧失。已经开发了几种青光眼性视神经病变(GUN)的实验模型,主要在非人类的灵长类动物中,以及最近和普遍在啮齿动物中。这些模型提供了重要的研究工具,以研究青光眼损害的潜在机制。此外,实验性GUN提供了量化和监控导致RGC丧失的风险因素的能力,例如眼内压,轴突健康和RGC人群的水平。使用这些实验模型,我们可以更好地了解GUN,从而可以开发潜在的神经保护策略。在这里,我们回顾了相关和最常用的方法来评估枪支轴突变性和RGC损失的优缺点。 GUN的轴突病理学包括轴突运输(AT)的功能破坏和结构变性。辣根过氧化物酶(HRP),若丹明B-异硫氰酸酯(RITC)和霍乱毒素B(CTB)荧光偶联物已被证明是AT的有效报告基因。此外,内源性AT相关蛋白的免疫组织化学(IHC)通常用作AT功能的指标。同样,可以通过关键轴突酶和结构蛋白的活性和表达变化来研究GUN中轴突的结构变性。轴突变性的评估可以通过轴突的直接定量,定性分级或两种方法的组合来进行。 RGC损失是实验性GUN研究中最经常量化的变量。逆行示踪剂可通过应用于上丘胶体(SC)来量化啮齿动物中的RGC种群。此外,用于RGC特异性蛋白的原位IHC是许多研究中常用的RGC定量方法。最近,已经研究了在Thy-1启动子下表达荧光蛋白的转基因小鼠模型为研究GUN提供RGC特异性和选择性标记的潜力。尽管这些方法代表了评估RGC的结构和功能完整性的重要进展,但每种方法都有其优缺点。它们共同为GUN的研究提供了一个广泛的工具箱。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号