...
首页> 外文期刊>Experimental dermatology >Hard cornification in reptilian epidermis in comparison to cornification in mammalian epidermis.
【24h】

Hard cornification in reptilian epidermis in comparison to cornification in mammalian epidermis.

机译:与哺乳动物表皮的角质化相比,爬虫类表皮的硬质角质化。

获取原文
获取原文并翻译 | 示例

摘要

The structure of reptilian hard (beta)-keratins, their nucleotide and amino acid sequence, and the organization of their genes are presented. These 13-19 kDa proteins are basic, rich in glycine, proline and serine, and different from cytokeratins. Their mRNAs are expressed in beta-cells. The central part of beta-keratins (this region has been previously termed 'core-box' and is peculiar of all sauropsid proteins) is composed of two beta-folded regions and shows a high identity with avian beta-keratins. This central part present in all beta-keratins, including feather keratins, is the site of polymerization to build the framework of beta-keratin filaments. Beta-keratins appear cytokeratin-associated proteins. Their central region might have originated in an ancestral glycine-rich protein present in stem reptiles from which beta-keratins evolved and diversified into reptiles and birds. Stem reptiles of the Carboniferous period might have possessed glycine-rich proteins derived from exons/domains corresponding to the variable, glycine-rich region of cytokeratins. Beta-keratins might have derived from a gene coding for small glycine-rich keratin-associated proteins. The glycine-rich regions evolved differently in the lineage leading to modern reptiles and birds versus that leading to mammals. In the reptilian lineage some amino acid regions produced by point mutations and amino acid changes might have given rise to originate the central beta-pleated region. The latter allowed the formation of filamentous proteins (beta-keratins) associated with intermediate filament keratins and replaced them in beta-keratin cells. In the mammalian lineage no beta-pleated region was generated in their matrix proteins, the glycine-rich keratin-associated proteins. The latter evolved as glycine-tyrosine-rich, sulphur-rich, and ultra-sulphur-rich proteins that are used for building hairs, horns and nails.
机译:介绍了爬行动物硬β-角蛋白的结构,其核苷酸和氨基酸序列以及其基因的组织。这些13-19 kDa的蛋白质是碱性蛋白质,富含甘氨酸,脯氨酸和丝氨酸,不同于细胞角蛋白。它们的mRNA在β细胞中表达。 β-角蛋白的中央部分(该区域以前被称为“核心盒”,是所有蜥脚类动物蛋白质的特有部分)由两个β折叠区域组成,与禽类β-角蛋白具有高度同一性。存在于所有β-角蛋白(包括羽毛角蛋白)中的这一中心部分是构建β-角蛋白丝骨架的聚合位点。 β-角蛋白出现与细胞角蛋白相关的蛋白。它们的中心区域可能起源于茎爬行动物中存在的祖先富含甘氨酸的蛋白质,β-角蛋白从中进化并多样化为爬行动物和鸟类。石炭纪时期的茎爬行动物可能拥有富含外源基因/域的富含甘氨酸的蛋白质,该蛋白质对应于细胞角蛋白的可变,富含甘氨酸的区域。 β-角蛋白可能源自编码富含甘氨酸的小角蛋白相关蛋白的基因。富含甘氨酸的区域在导致现代爬行动物和鸟类的谱系中的进化与导致哺乳动物的进化不同。在爬虫类谱系中,由点突变和氨基酸变化产生的某些氨基酸区域可能引起了中央β折叠区域的产生。后者允许形成与中间丝角蛋白相关的丝状蛋白(β-角蛋白),并将其替换为β-角蛋白细胞。在哺乳动物谱系中,在它们的基质蛋白(富含甘氨酸的角蛋白相关蛋白)中没有生成β折叠区。后者演变为富含甘氨酸,酪氨酸,富含硫和富含超硫的蛋白质,用于制造头发,角和指甲。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号