...
首页> 外文期刊>Bulletin of the Seismological Society of America >Rapid Estimates of the Source Time Function and M_w using Empirical Green’s Function Deconvolution
【24h】

Rapid Estimates of the Source Time Function and M_w using Empirical Green’s Function Deconvolution

机译:使用经验格林函数反卷积快速估算源时间函数和M_w

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The U.S. Geological Survey National Earthquake Information Center (NEIC) uses a variety of classical network-averaged magnitudes (e.g., m_b and M_s) and waveform modeling procedures to determine the moment magnitude (M_w) of an earthquake from teleseismic observations. Initial magnitude estimates are often inaccurate because of poor azimuthal control (sampling of the focal sphere) and/or intrinsic limitation of each method to a specific range of event size. To provide faster and more accurate estimates of the moment magnitude, source duration, and source complexity, NEIC is exploring the use of a variation of the empirical Green’s function (EGF) deconvolution procedure. This approach uses a predicted focal mechanism derived from the Global Centroid Moment Tensor Catalog to compute teleseismic P-wave synthetic seismograms, which are then deconvolved from observed P and SH waveforms to determine station-specific M_w, source time function, and a networkaveraged M_w. Our EGF approach is validated using broadband waveforms from 246 earthquakes in the magnitude range M_w 6.0–9.1. Within approximately 13 min of earthquake origin time, our procedure using teleseismic P waves only computes an M_w that lies within ±0.25 of the final W-phase M_w in the magnitude range 6–8. Using later arriving teleseismic SH phases results in an M_w that lies within ±0.12 of the W-phase M_w. For magnitude 8 or larger earthquakes, we underestimated the moment magnitude by up to 0.8 magnitude units, primarily due to the initial P phase not containing the total seismic moment release. Long-period phases such as the W-phase and surface waves that better characterize total moment release can also be incorporated in the processing.
机译:美国地质调查局国家地震信息中心(NEIC)使用各种经典的网络平均震级(例如m_b和M_s)和波形建模程序从远震观测中确定地震的矩震级(M_w)。由于方位角控制不佳(对焦点球的采样)和/或每种方法对事件大小的特定范围的固有限制,初始幅度估计通常不准确。为了提供对力矩大小,震源持续时间和震源复杂度的更快,更准确的估计,NEIC正在探索使用经验格林函数(EGF)反卷积程序的一种变体。这种方法使用了从全球质心矩张量目录导出的预测震源机制来计算远震P波合成地震图,然后将其与观测到的P和SH波形进行反卷积以确定站特定M_w,源时间函数和网络平均M_w。我们的EGF方法已使用246级M_w 6.0-9.1地震的宽带波形进行了验证。在大约地震发生时间的13分钟之内,我们使用远震P波的过程只能计算出一个M_w,该M_w在6-8的幅度范围内,在最终W相M_w的±0.25范围内。使用后来到达的远震SH相会导致M_w处于W相M_w的±0.12以内。对于8级或更大的地震,我们低估了震级,最多降低了0.8个震级,这主要是由于初始P相未包含总的地震矩释放量。诸如W相和表面波之类的长周期相,可以更好地表征总力矩释放,也可以纳入该处理过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号