首页> 外文期刊>European heart journal cardiovascular Imaging >How to optimize intracardiac blood flow tracking by echocardiographic particle image velocimetry? Exploring the influence of data acquisition using computer-generated data sets
【24h】

How to optimize intracardiac blood flow tracking by echocardiographic particle image velocimetry? Exploring the influence of data acquisition using computer-generated data sets

机译:如何通过超声心动图颗粒图像测速技术优化心内血流追踪?探索使用计算机生成的数据集进行数据采集的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Aims: Echocardiographic particle image velocimetry (EPIV) has been used for tracking contrast-enhanced intracavitary blood flow. Little is known, however, how basic imaging parameters (line density, frame rate, contrast bubble density) affect the quality of such tracking results. Our study aimed at investigating this by using simulated echo data sets. Methods and results: A computational three-dimensional (3D) blood flow field of the left ventricle (LV) was built using Fluent 12.1 (ANSYS Inc., USA). Then, the 3D motion of contrast microbubbles was simulated and 2D B-mode image loops were obtained ( f = 4.5 MHz; 50 sector angle) and analysed using flow tracking software (Omega Flow, Siemens, USA). Vorticity and the resulting in-plane velocity vector field was calculated at different frame rates (227, 113, 76, and 57 fps) and bubble densities (100, 63, 36, 19, 10, and 3 bubbles/mL) and compared with the ground truth known from the computational LV flow model. The normal distribution of the amplitude error and angle error histograms confirmed the overall good performance of the tracking method. In the standard deviation analysis of error histograms, tracked velocity amplitudes correlated best with the ground truth at 10 bubbles/mL and 227 fps (45.81 ± 3.43%, P < 0.05), while the best performance of flow direction estimates was at 10 bubbles/mL and 76 fps (25.41 ± 1.22°, P < 0.05). The correlation of estimated and true vorticity tended to grow with increasing frame rate and was optimal at 19 bubbles/mL and 113 fps (r = 0.79 ± 0.02). Conclusion: To achieve accurate vorticity measurements, frame rate acquisitions as 113 fps and contrast bubble density of 19 bubbles/mL are needed. . Published on behalf of the European Society of Cardiology. All rights reserved.
机译:目的:超声心动图颗粒图像测速仪(EPIV)已用于跟踪对比增强腔内血流。但是,基本的成像参数(线密度,帧速率,对比度气泡密度)如何影响这种跟踪结果的质量知之甚少。我们的研究旨在通过使用模拟回波数据集对此进行调查。方法和结果:使用Fluent 12.1(美国ANSYS Inc.)建立了左心室(LV)的三维计算(3D)血流场。然后,模拟对比微气泡的3D运动,并获得2D B模式图像循环(f = 4.5 MHz; 50扇形角),并使用流量跟踪软件(Omega Flow,西门子,美国)进行分析。在不同的帧频(227、113、76和57 fps)和气泡密度(100、63、36、19、10和3气泡/ mL)下计算涡度和所得的面内速度矢量场并与从计算的LV流模型中得知的地面真相。幅度误差和角度误差直方图的正态分布证实了跟踪方法的总体良好性能。在误差直方图的标准偏差分析中,在10气泡/ mL和227 fps时,跟踪的速度振幅与地面真实性之间的相关性最佳(45.81±3.43%,P <0.05),而流向估计的最佳性能为10气泡/ mL mL和76 fps(25.41±1.22°,P <0.05)。估计涡旋度和真实涡旋度的相关性倾向于随着帧速率的增加而增长,并且在19气泡/ mL和113 fps时最佳(r = 0.79±0.02)。结论:为了实现准确的涡度测量,需要以113 fps的帧速率采集和19气泡/ mL的对比气泡密度。 。代表欧洲心脏病学会出版。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号