...
首页> 外文期刊>European Journal of Soil Science >Influence of biochar incorporation on TDR-based soil water content measurements.
【24h】

Influence of biochar incorporation on TDR-based soil water content measurements.

机译:生物炭掺入对基于TDR的土壤含水量测量的影响。

获取原文
获取原文并翻译 | 示例
           

摘要

The incorporation of biochar (BC) into agricultural soil changes the soil's physical properties, which leads to changes in the soil's hydraulic properties, such as water retention and permeability, and alters the soil moisture environment in agricultural fields. To elucidate the effects of the incorporation of BC on the soil moisture environment, measurements of the soil water in biochar-amended agricultural fields are needed. Time domain reflectometry (TDR) is a widely used and established technique for the continuous measurement of the soil water content (SWC) in agricultural fields. However, TDR measurements are affected by the conductivity of soils. Biochar formed at higher pyrolysis temperatures is known to be very conductive. Therefore, we investigated the influence of the incorporation of BC on TDR-based SWC measurements. We examined calcaric dark red soil and the BC produced by pyrolysis of sugarcane bagasse at 400, 600 and 800 degrees C. The apparent relative permittivity ( epsilon a) of the BC (800 degrees C)-amended soil was greater than that of the non-amended soil at a given water content, whereas the epsilon a values of the soils amended with the BC (400 degrees C) and BC (600 degrees C) were the same as that of the non-amended soil at a given water content. We concluded that when a calibration curve obtained from a non-amended soil is used, TDR-based measurements tend to over-estimate the SWC containing the BC formed at higher pyrolysis temperatures because of conductive and dielectric losses. Therefore, the use of the real component ( epsilon 'a) of the soil's complex relative permittivity instead of epsilon a is effective when making TDR-based water content measurements of soils that contain BC formed at higher pyrolysis temperatures.
机译:将生物炭(BC)掺入农业土壤会改变土壤的物理特性,从而导致土壤的水力特性(例如保水率和渗透性)发生变化,并改变农田中的土壤水分环境。为了阐明BC掺入对土壤水分环境的影响,需要对经过生物炭改良的农田中的土壤水进行测量。时域反射仪(TDR)是一种用于农业领域中连续测量土壤含水量(SWC)的广泛使用和成熟的技术。但是,TDR测量受土壤电导率的影响。已知在较高的热解温度下形成的生物炭非常导电。因此,我们研究了BC掺入对基于TDR的SWC测量的影响。我们检查了钙质深红色土壤和甘蔗渣在400、600和800摄氏度下热解产生的BC。BC(800摄氏度)修正土壤的表观相对介电常数(ε )在给定的含水量下比未改良的土壤要大,而用BC(400摄氏度)和BC(600摄氏度)修正的土壤的ε a 值相同等于给定含水量下未改良土壤的土壤。我们得出的结论是,当使用从未经修正的土壤获得的校准曲线时,基于TDR的测量往往会高估包含在较高热解温度下形成的BC的SWC,这是由于导电和介电损耗造成的。因此,在进行基于TDR的土壤含水量测量时,使用土壤复数相对介电常数的实数分量(epsilon' a )代替epsilon a 是有效的。包含在较高的热解温度下形成的BC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号