...
首页> 外文期刊>Biochimica et biophysica acta. Biomembranes >New insights into water-phospholipid model membrane interactions
【24h】

New insights into water-phospholipid model membrane interactions

机译:水-磷脂模型膜相互作用的新见解

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Modulating the relative humidity (RH) of the ambient gas phase of a phospholipid/water sample for modifying the activity of phospholipid-sorbed water [humidity-controlled osmotic stress methods, J. Chem. Phys. 92 (1990) 4519 and J. Phys. Chem. 96 (1992) 446] has opened a new field of research of paramount importance. New types of phase transitions, occurring at specific values of this activity, have been then disclosed. Hence, it is become recognized that this activity, like the temperature T, is an intensive parameter of the thermodynamical state of these samples. This state can be therefore changed (phase transition) either, by modulating T at a given water activity (a given hydration level), or, by modulating the water activity, at a given T. The underlying mechanisms of these two types of transition differ, especially when they appear as disorderings of fatty chains. In lyotropic transitions, this disordering follows from two thermodynamical laws. First, acting on the activity (the chemical potential) of water external to a phospholipid/water sample, a transbilayer gradient of water chemical potential is created, leading to a transbilayer flux of water (Fick's law). Second, water molecules present within the hydrocarbon region of this phospholipid bilayer interact with phospholipid molecules through their chemical potential (Gibbs-Duhem relation): the conformational state of fatty chains (the thermodynamical state of the phospholipid molecules) changes. This process is slow, as revealed by osmotic stress time-resolved experiments. In thermal chain-melting transitions, the first rapid step is the disordering of fatty chains of a fraction of phospholipid molecules. It occurs a few degrees before the main transition temperature, T_m, during the pretransition and the sub-main transition. The second step, less rapid, is the redistribution of water molecules between the different parts of the sample, as revealed by T-jump time-resolved experiments. Finally, in lyotropic and thermal transitions, hydration and conformation are linked but the order of anteriority of their change, in each case, is probably not the same. In this review, first, the interactions of phospholipid submolecular fragments and water molecules, in the interfacial and hydrocarbon regions of phospholipid/water multibilayer stacks, will be described. Second, the coupling of the conformational states of phospholipid and water molecules, during thermal and lyotropic transitions, will be demonstrated through examples.
机译:调节磷脂/水样品的周围气相的相对湿度(RH),以改变磷脂吸附的水的活性[湿度控制的渗透应力方法,J。物理92(1990)4519和J. Phys。化学96(1992)446]开辟了极为重要的新研究领域。然后公开了发生在该活性的特定值处的新型相变。因此,已经认识到,这种活动,如温度T,是这些样品的热力学状态的重要参数。因此,可以通过在给定的水活度(给定的水合作用水平)下调节T或通过在给定的水温下调节水的活度来改变(相变)这种状态。这两种类型的跃迁的基本机理不同,尤其是当它们表现为脂肪链紊乱时。在溶致转变中,这种无序性源自两个热力学定律。首先,作用在磷脂/水样品外部的水的活性(化学势)上,产生水化学势的跨双层梯度,从而导致水的跨双层通量(菲克定律)。其次,存在于该磷脂双层分子的碳氢化合物区域内的水分子通过其化学势(吉布斯-杜姆关系)与磷脂分子相互作用:脂肪链的构象状态(磷脂分子的热力学状态)发生变化。如渗透压时间分辨实验所揭示的,该过程很慢。在热链熔融转变中,第一步是使一部分磷脂分子的脂肪链紊乱。在预转变和子主转变期间,它在主转变温度T_m之前几度发生。第二步(较慢)是水分子在样品不同部分之间的重新分布,如T跃迁时间分辨实验所揭示的那样。最后,在溶致和热转变中,水合作用和构象是联系在一起的,但是在每种情况下,其变化的先后顺序可能并不相同。在这篇综述中,首先,将描述磷脂/水多层双层堆叠的界面和烃区域中的磷脂亚分子片段与水分子的相互作用。其次,将通过实例证明在热和溶致转变过程中磷脂和水分子的构象态的偶联。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号