首页> 外文期刊>Environmental microbiology >Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment
【24h】

Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment

机译:古细菌和细菌对环境中需氧氨氧化的相对贡献

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Traditionally, organisms responsible for major biogeochemical cycling processes have been determined by physiological characterization of environmental isolates in laboratory culture. Molecular techniques have, however, confirmed the widespread occurrence of abundant bacterial and archaeal groups with no cultivated representative, making it difficult to determine their ecosystem function. Until recently, ammonia oxidation, the first step in the globally important process of nitrification, was thought to be performed almost exclusively by bacteria. Metagenome studies, followed by laboratory isolation, then demonstrated the potential for significant ammonia oxidation by mesophilic crenarchaea, whose ecosystem function was previously unknown. Re-assessment of the role of bacteria in ammonia oxidation is now required and this article reviews the current evidence for the relative importance of bacteria and archaea. Much of this evidence is based on metagenomic analysis and molecular techniques for estimation of gene and gene transcript abundance, changes in ammonia oxidizer community structure during active nitrification and phylogeny of natural communities. These studies have been complemented by physiological characterization of a laboratory isolate and by incorporation of labelled substrates. Data from these studies provide increasingly convincing evidence for the importance of archaeal ammonia oxidizers in the global nitrogen cycle. They also highlight the need to re-assess the importance of ammonia-oxidizing bacteria, the requirement and limitations of molecular techniques in linking specific microbial groups to ecosystem function and the limitations of reliance on laboratory cultures.
机译:传统上,负责主要生物地球化学循环过程的生物是通过实验室培养中环境分离物的生理特征确定的。然而,分子技术已证实,广泛的细菌和古细菌群体广泛存在,而没有培养的代表,因此很难确定其生态系统功能。直到最近,氨氧化是全球重要的硝化过程的第一步,据认为几乎只能由细菌来进行。进行元基因组研究,然后进行实验室隔离,然后证明了嗜温性克氏针藻明显氨氧化的潜力,而该菌的生态系统功能以前未知。现在需要对细菌在氨氧化中的作用进行重新评估,本文回顾了细菌和古细菌相对重要性的最新证据。这些证据大部分基于宏基因组学分析和分子技术,用于估算基因和基因转录物的丰度,活性硝化过程中氨氧化剂群落结构的变化以及自然群落的系统发育。这些研究通过实验室分离物的生理表征和掺入标记的底物得到了补充。这些研究的数据提供了越来越令人信服的证据,证明了古细菌氨氧化剂在全球氮循环中的重要性。他们还强调了需要重新评估氨氧化细菌的重要性,将特定微生物群与生态系统功能联系起来的分子技术的要求和局限性以及对实验室培养的依赖程度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号