首页> 外文期刊>Environmental microbiology >Identification of acetate-utilizing Bacteria and Archaea in methanogenic profundal sediments of Lake Kinneret (Israel) by stable isotope probing of rRNA
【24h】

Identification of acetate-utilizing Bacteria and Archaea in methanogenic profundal sediments of Lake Kinneret (Israel) by stable isotope probing of rRNA

机译:通过稳定的rRNA同位素探测识别Kinneret湖(以色列)产甲烷深层沉积物中利用乙酸的细菌和古细菌

获取原文
获取原文并翻译 | 示例
           

摘要

Acetate is an important intermediate in the decomposition of organic matter in anoxic freshwater sediments. Here, we identified distinct microorganisms active in its oxidation and transformation to methane in the anoxic methanogenic layers of Lake Kinneret (Israel) profundal sediment by rRNA-based stable isotope probing (RNA-SIP). After 18 days of incubation with amended [U-C-13]acetate we found that archaeal 16S rRNA was C-13-labelled to a far greater extent than bacterial rRNA. We identified acetoclastic methanogens related to Methanosaeta concilii as being most active in the degradation and assimilation of acetate. Oxidation of the acetate-methyl group played only a minor role, but nevertheless 'heavy' C-13-labelled bacterial rRNA templates were identified. 'Heavy' bacteria were mainly affiliated with the Betaproteobacteria (mostly Rhodocyclales and Nitrosomonadales), the Nitrospira phylum (related to 'Magnetobacterium bavaricum' and Thermodesulfovibrio yellowstonii), and also with the candidate phylum 'Endomicrobia'. However, the mode of energy gain that allowed for the assimilation of C-13-acetate by these bacterial groups remains unknown. It may have involved syntrophic oxidation of acetate, reduction of chlorinated compounds, reduction of humic substances, fermentation of organic compounds, or even predation of C-13-labelled Methanosaeta spp. In summary, this SIP experiment shows that acetate carbon was predominantly consumed by acetoclastic methanogens in profundal Lake Kinneret sediment, while it was also utilized by a small and heterogeneous community of bacteria.
机译:乙酸盐是缺氧淡水沉积物中有机物分解的重要中间体。在这里,我们通过基于rRNA的稳定同位素探测(RNA-SIP),识别了在Kinneret湖(以色列)深度沉积物的缺氧产甲烷层中,其氧化和转化为甲烷具有活性的独特微生物。与修饰的[U-C-13]乙酸盐孵育18天后,我们发现古细菌16S rRNA的C-13标记程度远高于细菌rRNA。我们发现与棉兰甲烷八叠球菌相关的乙酰碎屑产甲烷菌在醋酸盐的降解和同化中最活跃。乙酸甲酯基团的氧化仅起很小的作用,但是仍然鉴定出了“重”的C-13标记的细菌rRNA模板。 “重”细菌主要与β-变形杆菌(主要是红假单胞菌和亚硝化单胞菌),门脉硝化螺菌(与“巴氏杆菌”和“黄热硫杆菌”有关),也与候选门菌“内生微生物”有关。然而,允许这些细菌基团吸收C-13-乙酸盐的能量获取方式仍然未知。它可能涉及乙酸的同养氧化,氯化物的还原,腐殖质的还原,有机化合物的发酵,甚至是C-13标记的甲烷菌属(Methanosaeta spp)的捕食。总而言之,该SIP实验表明,乙酸盐的碳主要被基尼特湖深层沉积物中的破乳产甲烷菌消耗,同时也被小型且异质的细菌群落利用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号