...
首页> 外文期刊>Biochimica et biophysica acta. Biomembranes >Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy.
【24h】

Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy.

机译:固态核磁共振波谱显示视紫红质光活化过程中的视网膜动力学。

获取原文
获取原文并翻译 | 示例

摘要

Rhodopsin is a canonical member of class A of the G protein-coupled receptors (GPCRs) that are implicated in many of the drug interventions in humans and are of great pharmaceutical interest. The molecular mechanism of rhodopsin activation remains unknown as atomistic structural information for the active metarhodopsin II state is currently lacking. Solid-state (2)H NMR constitutes a powerful approach to study atomic-level dynamics of membrane proteins. In the present application, we describe how information is obtained about interactions of the retinal cofactor with rhodopsin that change with light activation of the photoreceptor. The retinal methyl groups play an important role in rhodopsin function by directing conformational changes upon transition into the active state. Site-specific (2)H labels have been introduced into the methyl groups of retinal and solid-state (2)H NMR methods applied to obtain order parameters and correlation times that quantify the mobility of the cofactor in the inactive dark state, as well as the cryotrapped metarhodopsin I and metarhodopsin II states. Analysis of the angular-dependent (2)H NMR line shapes for selectively deuterated methyl groups of rhodopsin in aligned membranes enables determination of the average ligand conformation within the binding pocket. The relaxation data suggest that the beta-ionone ring is not expelled from its hydrophobic pocket in the transition from the pre-activated metarhodopsin I to the active metarhodopsin II state. Rather, the major structural changes of the retinal cofactor occur already at the metarhodopsin I state in the activation process. The metarhodopsin I to metarhodopsin II transition involves mainly conformational changes of the protein within the membrane lipid bilayer rather than the ligand. The dynamics of the retinylidene methyl groups upon isomerization are explained by an activation mechanism involving cooperative rearrangements of extracellular loop E2 together with transmembrane helices H5 and H6. These activating movements are triggered by steric clashes of the isomerized all-trans retinal with the beta4 strand of the E2 loop and the side chains of Glu(122) and Trp(265) within the binding pocket. The solid-state (2)H NMR data are discussed with regard to the pathway of the energy flow in the receptor activation mechanism.
机译:视紫红质是G蛋白偶联受体(GPCR)的A类的典型成员,其与人类的许多药物干预有关,并且具有极大的药学意义。视紫红质激活的分子机制仍然是未知的,因为目前缺少关于活性视紫红质II状态的原子结构信息。固态(2)H NMR构成了研究膜蛋白原子级动力学的有力方法。在本申请中,我们描述了如何获得关于视网膜辅因子与视紫红质的相互作用的信息,该相互作用随感光细胞的光激活而变化。视网膜甲基在视紫红质功能中起重要作用,它通过指导构象变化转变为活性状态而发挥作用。已将位点特异性(2)H标签引入视网膜的甲基和固态(2)H NMR方法中,该方法用于获得有序参数和相关时间,以量化非活性暗态中辅因子的迁移率就像冷冻包裹的我视紫红质I和我视紫红质II一样。分析视紫红质在对准膜中的选择性氘代甲基的角度依赖性(2)H NMR线形,可以确定结合口袋中的平均配体构象。弛豫数据表明,β-紫罗兰酮环在从预活化的视紫红质I转变为活性的视紫红质II状态时并未从其疏水口袋中排出。相反,在激活过程中,视网膜辅因子的主要结构变化已经发生在视紫红质I状态。甲视紫红质Ⅰ至甲视紫红质Ⅱ的转变主要涉及膜脂质双层中蛋白质的构象变化,而不是配体。视黄醛亚甲基在异构化时的动力学是由涉及细胞外环E2与跨膜螺旋H5和H6的协同重排的激活机制解释的。这些活化运动是由异构化的全反式视网膜与E2环的beta4链以及结合口袋中Glu(122)和Trp(265)的侧链发生空间位阻而触发的。固态(2)H NMR数据讨论了受体活化机制中的能量流途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号