首页> 外文期刊>Epilepsy research >Quantitative brain surface mapping of an electrophysiologic/metabolic mismatch in human neocortical epilepsy.
【24h】

Quantitative brain surface mapping of an electrophysiologic/metabolic mismatch in human neocortical epilepsy.

机译:人类新皮层癫痫中电生理/代谢失配的定量脑表面定位。

获取原文
获取原文并翻译 | 示例
           

摘要

The spatial relationship between an intracranial EEG-defined epileptic focus and cortical hypometabolism on glucose PET has not been precisely described. In order to quantitatively evaluate the hypothesis that ictal seizure onset and/or rapid seizure propagation, detected by subdural EEG monitoring, commonly involves normometabolic cortex adjacent to hypometabolic cortical regions, we applied a novel, landmark-constrained conformal mapping approach in 14 children with refractory neocortical epilepsy. The 3D brain surface was parcellated into finite cortical elements (FCEs), and hypometabolism was defined using lobe- and side-specific asymmetry indices derived from normal adult controls. The severity and location of hypometabolic areas vs. ictal intracranial EEG abnormalities were compared on the 3D brain surface. Hypometabolism was more severe in the seizure onset zone than in cortical areas covered by non-onset electrodes. However, similar proportions of the onset electrodes were located over and adjacent to (within 2 cm) hypometabolic regions (46% vs. 41%, respectively), whereas rapid seizure spread electrodes preferred these "adjacent areas" rather than the hypometabolic area itself (51% vs. 22%). On average, 58% of the hypometabolic regions had no early seizure involvement. These findings strongly support that the seizure onset zone often extends from hypometabolic to adjacent normometabolic cortex, while large portions of hypometabolic cortex are not involved in seizure onset or early propagation. The clinical utility of FDG PET in guiding subdural electrode placement in neocortical epilepsy could be greatly enhanced by extending grid coverage to at least 2 cm beyond hypometabolic cortex, when feasible.
机译:尚未明确描述颅内脑电图定义的癫痫病灶与皮质PET代谢不良之间的空间关系。为了定量评估硬膜下脑电图监测发现发作性发作和/或发作快速发作的假设通常涉及邻近代谢不足皮质区域的正常代谢皮质,我们对14例难治儿童应用了一种新的,受地标限制的保形映射方法新皮质癫痫。将3D脑表面分解为有限的皮质元素(FCE),并使用源自正常成人对照的叶和侧特异性不对称指数定义代谢不足。在3D脑表面比较了代谢不足区域与颅内脑电图异常的严重程度和位置。癫痫发作区域的代谢异常比非发作电极覆盖的皮质区域严重。但是,相似比例的开始电极位于代谢不足区域的上方和附近(分别在2 cm之内)(分别为46%和41%),而快速癫痫扩散电极更喜欢这些“相邻区域”而不是代谢不足的区域本身( 51%和22%)。平均而言,58%的代谢不良区域没有早期癫痫发作。这些发现强烈支持癫痫发作区通常从代谢不足的皮层延伸到相邻的正常代谢皮层,而大部分代谢不足的皮层不参与癫痫发作或早期传播。在可行的情况下,通过将网格覆盖范围扩展至距代谢不足的皮质至少2 cm,可以大大增强FDG PET在指导新皮层癫痫硬膜下电极放置中的临床实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号