...
首页> 外文期刊>EPE Journal: European Power Electronics and Drives >modeling and simulation of non linear magnetic cores at high frequencies using PSpice
【24h】

modeling and simulation of non linear magnetic cores at high frequencies using PSpice

机译:PSpice对高频非线性磁芯进行建模和仿真

获取原文
获取原文并翻译 | 示例

摘要

Using PSpice of MiscroSim to simulate power converters sometimes brings awkward complications such as the simulation of real magnetic components. It deals a little bit of work to bring a good agreement between experimental and simulated results. Simulation with linear inductors or transformers does not produce good results. The reason is that real magnetic components present saturation and hysteresis, a phenomenon that characterizes magnetic materials. The hysteresis or B-H loop of a magnetic component, shown in the Fig. below, is highly dependent on frequency, waveform (not very important for ferrite material), temperature, excitation level, etc. Although PSpice includes in its magnetic library a list of non-linear components, rarely these parameters are coincident with our working conditions or simply they are not specified. In all of these cases it is necessary to model the non-linear magnetic cores in our particular application. This paper presents a systematic procedure that permits one to obtain the main PSpice parameters to model magnetic cores using the Jiles and Atherton theory. The procedure is totally general and models both the static B-H loop given by the manufacturer data sheet as well as the one that may be obtained in accordance with the specific operating conditions of an electronic system. This is really important, since it permits the user to define the model parameters for high frequency applications, which are not completely correct in the PSpice library. All this is done in a simple way by using the experimental measurement of the coercivity (H{sub}c) remanence (M{sub}r), saturation magnetization (M{sub}s), maximum differential susceptibility X{sub}(max) differential susceptibility at the remanence point (X{sub}r), the coordinates of the loop tip (H{sub}m, M{sub}m) and the slope at this point (X{sub}m). With this procedure a good agreement between experimental and simulated B-H loop is obtained, as shown in the Figure.
机译:使用MiscroSim的PSpice模拟功率转换器有时会带来尴尬的复杂情况,例如模拟实际的磁性元件。它需要进行一些工作才能使实验结果和模拟结果达到良好的一致性。使用线性电感器或变压器进行仿真不会产生良好的结果。原因是实际的磁性成分会出现饱和和磁滞现象,这是磁性材料的特征。如下图所示,磁性元件的磁滞或BH回路高度依赖于频率,波形(对铁氧体材料不是很重要),温度,激励水平等。尽管PSpice在其磁性库中包含以下列表:非线性组件,很少有这些参数与我们的工作条件相吻合,或者只是没有指定。在所有这些情况下,有必要在我们的特定应用中对非线性磁芯进行建模。本文提出了一种系统的程序,该程序允许使用Jiles和Atherton理论获得主要PSpice参数以对磁芯建模。该过程是完全通用的,并且对制造商数据表给出的静态B-H环路以及可以根据电子系统的特定操作条件获得的静态B-H环路进行建模。这一点非常重要,因为它允许用户定义用于高频应用的模型参数,而这些参数在PSpice库中并不完全正确。通过使用矫顽力(H {sub} c)剩磁(M {sub} r),饱和磁化强度(M {sub} s),最大磁化率X {sub}(最大值)在剩磁点(X {sub} r)处的磁化率,环尖端的坐标(H {sub} m,M {sub} m)和该点处的斜率(X {sub} m)。通过此过程,可以在实验B-H回路与模拟B-H回路之间取得良好的一致性,如图所示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号