首页> 外文期刊>Environmental Science and Pollution Research >Inactivation of Escherichia coli in fresh water with advanced oxidation processes based on the combination of O-3, H2O2, and TiO2. Kinetic modeling
【24h】

Inactivation of Escherichia coli in fresh water with advanced oxidation processes based on the combination of O-3, H2O2, and TiO2. Kinetic modeling

机译:基于O-3,H2O2和TiO2的结合,采用先进的氧化工艺使淡水中的大肠杆菌失活。动力学建模

获取原文
获取原文并翻译 | 示例
           

摘要

The purpose of this work was to study the efficiency of different treatments, based on the combination of O-3, H2O2, and TiO2, on fresh surface water samples fortified with wild strains of Escherichia coli. Moreover, an exhaustive assessment of the influence of the different agents involved in the treatment has been carried out by kinetic modeling of Escherichia coli inactivation results. The treatments studied were (i) ozonation (O-3), (ii) the peroxone system (O-3/0.04 mM H2O2), (iii) catalytic ozonation (O-3/1 g/L TiO2), and (iv) a combined treatment of O-3/1 g/L TiO2/0.04 mM H2O2. It was observed that the peroxone system achieved the highest levels of inactivation of Escherichia coli, around 6.80 log after 10 min of contact time. Catalytic ozonation also obtained high levels of inactivation in a short period of time, reaching 6.22 log in 10 min. Both treatments, the peroxone system (O-3/H2O2) and catalytic ozonation (O-3/TiO2), produced a higher inactivation rate of Escherichia coli than ozonation (4.97 log after 10 min). While the combination of ozone with hydrogen peroxide or titanium dioxide thus produces an increase in the inactivation yield of Escherichia coli regarding ozonation, the O-3/TiO2/H2O2 combination did not enhance the inactivation results. The fitting of experimental values to the corresponding equations through nonlinear regression techniques was carried out with Microsoft(R) Excel GInaFiT software. The inactivation results of Escherichia coli did not respond to linear functions, and it was necessary to use mathematical models able to describe certain deviations in the bacterial inactivation processes. In this case, the inactivation results fit with mathematical models based on the hypothesis that the bacteria population is divided into two different subgroups with different degrees of resistance to treatments, for instance biphasic and biphasic with shoulder models.
机译:这项工作的目的是研究基于O-3,H2O2和TiO2组合的不同处理对用大肠杆菌野生菌株强化的新鲜地表水样品的效率。此外,已经通过大肠杆菌灭活结果的动力学模型对涉及治疗的不同药剂的影响进行了详尽的评估。研究的处理方法是(i)臭氧化(O-3),(ii)过氧酮系统(O-3 / 0.04 mM H2O2),(iii)催化臭氧化(O-3 / 1 g / L TiO2)和(iv )O-3 / 1 g / L TiO2 / 0.04 mM H2O2的组合处理。观察到过氧化物酶系统在接触时间10分钟后达到了最高的大肠杆菌灭活水平,约为6.80 log。催化臭氧化在短时间内也获得了很高的灭活水平,在10分钟内达到6.22 log。过氧化物酶系统(O-3 / H2O2)和催化臭氧化(O-3 / TiO2)这两种处理均产生了比臭氧化(10分钟后为4.97 log)更高的大肠杆菌灭活率。因此,臭氧与过氧化氢或二氧化钛的组合在臭氧化方面提高了大肠杆菌的灭活产率,而O-3 / TiO2 / H2O2的组合并没有提高灭活的效果。通过Microsoft®Excel GInaFiT软件,通过非线性回归技术将实验值拟合到相应的方程式中。大肠杆菌的灭活结果不响应线性函数,因此有必要使用能够描述细菌灭活过程中某些偏差的数学模型。在这种情况下,基于以下假设的失活结果与数学模型相符:细菌种群被分为两个不同的亚组,它们对治疗的抵抗程度不同,例如双相和双相双肩模型。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号