...
首页> 外文期刊>Biochimica et biophysica acta. Bioenergetics >Towards clarifying what distinguishes cyanobacteria able to resurrect after desiccation from those that cannot: The photosynthetic aspect
【24h】

Towards clarifying what distinguishes cyanobacteria able to resurrect after desiccation from those that cannot: The photosynthetic aspect

机译:力求弄清干燥后能够复活的蓝细菌与不能干燥的蓝细菌有何区别:光合方面

获取原文
获取原文并翻译 | 示例
           

摘要

Organisms inhabiting biological soil crusts (BSCs) are able to cope with extreme environmental conditions including daily hydration/dehydration cycles, high irradiance and extreme temperatures. The photosynthetic machinery, potentially the main source of damaging reactive oxygen species during cessation of CO2 fixation in desiccating cells, must be protected to avoid sustained photodamage. We compared certain photosynthetic parameters and the response to excess light of BCS-inhabiting, desiccation-tolerant cyanobacteria Leptolyngbya ohadii and Nostoc reinholdii with those observed in the "model" organisms Nostoc sp. PCC 7120, able to resurrect after mild desiccation, and Synechococcus elongatus PCC 7942 and Synechocystis sp. PCC 6803 that are unable to recover from dehydration. Desiccation-tolerant strains exhibited a transient decline in the photosynthetic rate at light intensities corresponding to the inflection point in the PI curve relating the 02 evolution rate to light intensity. They also exhibited a faster and larger loss of variable fluorescence and profoundly faster Q(A)(-) re-oxidation rates after exposure to high illumination. Finally, a smaller difference was found in the temperature of maximal thermoluminescence signal in the absence or presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) than observed in "model" cyanobacteria. These parameters indicate specific functional differences of photosystem II (PSII) between desiccation tolerant and sensitive cyanobacteria. We propose that exposure to excess irradiation activates a non-radiative electron recombination route inside PSII that minimizes formation of damaging singlet oxygen in the desiccation-tolerant cyanobacteria and thereby reduces photodamage. (C) 2016 Elsevier B.V. All rights reserved.
机译:居住在生物土壤结皮(BSC)中的生物能够应对极端的环境条件,包括每天的水合作用/脱水周期,高辐照度和极端温度。光合作用机制可能是在干燥细胞中停止CO2固定过程中潜在破坏活性氧的主要来源,必须加以保护,以避免持续的光损害。我们比较了某些光合作用参数和居住在BCS中,耐干燥性的蓝细菌Leptolyngbya ohadii和Nostoc reinholdii对过量光的响应与在“模型”生物Nostoc sp中观察到的响应。 PCC 7120,能够在轻度干燥后复活,以及伸长的乳突球菌PCC 7942和Synechocystis sp。无法从脱水中恢复的PCC 6803。耐干燥菌株在光强度下表现出光合速率的瞬时下降,该光强度对应于PI 2曲线的拐点,该拐点将O 2的演化速率与光强度联系起来。它们还表现出更快和更大的可变荧光损失,以及在暴露于高光照后显着更快的Q(A)(-)重氧化速率。最后,发现在不存在或存在3-(3,4-二氯苯基)-1,1-二甲基脲(DCMU)的情况下,最大热致发光信号的温度比“模型”蓝细菌中观察到的温度差异小。这些参数表明耐干性和敏感性蓝细菌之间光系统II(PSII)的特定功能差异。我们建议,暴露于过量辐射会激活PSII内部的非辐射电子重组途径,从而使耐干燥性的蓝细菌中有害单线态氧的形成最小化,从而降低光损伤。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号