首页> 外文期刊>Biochimica et biophysica acta. Biomembranes >Water wires in atomistic models of the Hv1 proton channel
【24h】

Water wires in atomistic models of the Hv1 proton channel

机译:Hv1质子通道原子模型中的水线

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The voltage-gated proton channel (Hv1) is homologous to the voltage-sensing domain (VSD) of voltage-gated potassium (Kv) channels but lacks a separate pore domain. The Hv1 monomer has dual functions: it gates the proton current and also serves as the proton conduction pathway. To gain insight into the structure and dynamics of the yet unresolved proton permeation pathway, we performed all-atom molecular dynamics simulations of two different Hv1 homology models in a lipid bilayer in excess water. The structure of the Kv1.2-Kv2.1 paddle-chimera VSD was used as template to generate both models, but they differ in the sequence alignment of the S4 segment. In both models, we observe a water wire that extends through the membrane, whereas the corresponding region is dry in simulations of the Kv1.2-Kv2.1 paddle-chimera. We find that the kinetic stability of the water wire is dependent upon the identity and location of the residues lining the permeation pathway, in particular, the S4 arginines. A measurement of water transport kinetics indicates that the water wire is a relatively static feature of the permeation pathway. Taken together, our results suggest that proton conduction in Hv1 may occur via Grotthuss hopping along a robust water wire, with exchange of water molecules between inner and outer ends of the permeation pathway minimized by specific water-protein interactions. This article is part of a Special Issue entitled: Membrane protein structure and function.
机译:电压门控质子通道(Hv1)与电压门控钾(Kv)通道的电压传感域(VSD)同源,但缺少单独的孔域。 Hv1单体具有双重功能:它控制质子电流,也充当质子传导途径。为了深入了解尚未解决的质子渗透途径的结构和动力学,我们在过量水的脂质双层中进行了两种不同的Hv1同源性模型的全原子分子动力学模拟。 Kv1.2-Kv2.1桨叶嵌合体VSD的结构被用作生成两个模型的模板,但是它们在S4段的序列比对上有所不同。在这两个模型中,我们观察到一根水丝穿过膜,而在Kv1.2-Kv2.1桨叶嵌合体的模拟中,相应的区域是干燥的。我们发现,水丝的动力学稳定性取决于渗透路径内的残留物的身份和位置,特别是S4精氨酸。对水输送动力学的测量表明,水丝是渗透路径的相对静态特征。两者合计,我们的结果表明,Hv1的质子传导可能是通过Grotthuss沿着坚固的水线跳动而发生的,渗透途径内外端之间的水分子交换通过特定的水-蛋白质相互作用而被最小化。本文是名为“膜蛋白结构和功能”的特刊的一部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号