首页> 外文期刊>Engineering Optimization >A SEQUENTIAL APPROXIMATION METHOD USING NEURAL NETWORKS FOR ENGINEERING DESIGN OPTIMIZATION PROBLEMS
【24h】

A SEQUENTIAL APPROXIMATION METHOD USING NEURAL NETWORKS FOR ENGINEERING DESIGN OPTIMIZATION PROBLEMS

机译:工程设计优化问题的神经网络时序逼近方法

获取原文
获取原文并翻译 | 示例
           

摘要

There are three characteristics in engineering design optimization problems: (1) the design variables are often discrete physical quantities; (2) the constraint functions often cannot be expressed analytically in terms of design variables; (3) in many engineering design applications, critical constraints are often 'pass-fail', '0-1' type binary constraints. This paper presents a sequential approximation method specifically for engineering optimization problems with the three characteristics. In this method a back-propagation neural network is trained to simulate a rough map of the feasible domain formed by the constraints using a few representative training data. A training data point consists of a discrete design point and whether this design point is feasible or infeasible. Function values of the constraints are not required. A search algorithm then searches for the optimal point in the feasible domain simulated by the neural network. This new design point is checked against the true constraints to see whether it is feasible, and is then added to the training set. The neural network is trained again with this added information, in the hope that the network will better simulate the boundary of the feasible domain of the true optimization problem. Then a further search is made for the optimal point in this new approximated feasible domain. This process continues in an iterative manner until the approximate model locates the same optimal point in consecutive iterations. A restart strategy is also employed so that the method may have a better chance to reach a global optimum. Design examples with large discrete design spaces and implicit constraints are solved to demonstrate the practicality of this method.
机译:工程设计优化问题具有三个特征:(1)设计变量通常是离散的物理量; (2)约束函数通常不能用设计变量来解析地表达; (3)在许多工程设计应用中,关键约束通常是“通过-失败”,“ 0-1”类型的二进制约束。本文针对具有三个特征的工程优化问题提出了一种顺序逼近方法。在这种方法中,使用一些代表性的训练数据训练反向传播神经网络,以模拟由约束形成的可行域的粗糙图。训练数据点包含一个离散的设计点,以及该设计点是否可行。不需要约束的函数值。然后,搜索算法在神经网络模拟的可行域中搜索最佳点。对照真实约束检查此新设计点,以查看其是否可行,然后将其添加到训练集中。再次使用此添加的信息对神经网络进行训练,希望该网络可以更好地模拟真正优化问题的可行域的边界。然后在这个新的近似可行域中进一步搜索最佳点。该过程以迭代方式继续进行,直到近似模型在连续迭代中找到相同的最佳点为止。还采用了重新启动策略,以便该方法可能有更好的机会达到全局最优。解决了具有大离散设计空间和隐式约束的设计实例,以证明该方法的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号