首页> 外文期刊>Biochimica et biophysica acta. Bioenergetics >The Q-cycle reviewed: How well does a monomeric mechanism of the bc(1) complex account for the function of a dimeric complex?
【24h】

The Q-cycle reviewed: How well does a monomeric mechanism of the bc(1) complex account for the function of a dimeric complex?

机译:回顾了Q周期:bc(1)配合物的单体机理对二聚体配合物功能的解释如何?

获取原文
获取原文并翻译 | 示例
           

摘要

Recent progress in understanding the Q-cycle mechanism of the bc(1) complex is reviewed. The data strongly support a mechanism in which the Q(o)-site operates through a reaction in which the first electron transfer from ubiquinol to the oxidized iron-sulfur protein is the rate-determining step for the overall process. The reaction involves a proton-coupled electron transfer down a hydrogen bond between the ubiquinol and a histidine ligand of the [2Fe-2S] cluster, in which the unfavorable protonic configuration contributes a substantial part of the activation barrier. The reaction is endergonic, and the products are an unstable ubisemiquinone at the Q(o)-site, and the reduced iron-sulfur protein, the extrinsic mobile domain of which is now free to dissociate and move away from the site to deliver an electron to cyt c(1) and liberate the H(+). When oxidation of the semiquinone is prevented, it participates in bypass reactions, including superoxide generation if O(2) is available. When the b-heme chain is available as an acceptor, the semiquinone is oxidized in a process in which the proton is passed to the glutamate of the conserved -PEWY- sequence, and the semiquinone anion passes its electron to heme b(L) to form the product ubiquinone. The rate is rapid compared to the limiting reaction, and would require movement of the semiquinone closer to heme b(L) to enhance the rate constant. The acceptor reactions at the Q(i)-site are still controversial, but likely involve a two-electron gate mechanisms to explain the cyt b(150) phenomenon are discussed, and the information from pulsed-EPR studies about the structure of the intermediate state is reviewed. The mechanism discussed is applicable to a monomeric bc(1) complex. We discuss evidence in the literature that has been interpreted as shown that the dimeric structure participates in a more complicated mechanism involving electron transfer across the dimer interface. We show from myxothiazol titrations and mutational analysis of Tyr-199, which is at the interface between monomers, that no such inter-monomer electron transfer is detected at the level of the b(L) hemes. We show from analysis of strains with mutations at Asn-221 that there are coulombic interactions between the b-hemes in a monomer. The data can also be interpreted as showing similar coulombic interaction across the dimer interface, and we discuss mechanistic implications.
机译:本文对了解bc(1)复合物的Q循环机理的最新进展进行了综述。数据有力地支持了一种机制,其中Q(o)位通过反应进行操作,在该反应中,从泛醇到氧化铁硫蛋白的首次电子转移是整个过程的速率决定步骤。该反应涉及质子偶联的电子沿着泛醇和[2Fe-2S]簇的组氨酸配体之间的氢键向下转移,其中质子的不利构型构成了活化壁垒的大部分。该反应是endergonic的,产物是在Q(o)位的不稳定的泛半醌,以及还原的铁硫蛋白,该蛋白的外在移动域现在可以自由解离并从该位点移开,以传递电子c(1)并释放H(+)。当防止半醌氧化时,它会参与旁路反应,包括O(2)可用时的超氧化物生成。当b-血红素链可用作受体时,半醌在一个过程中被氧化,在该过程中,质子传递到保守的-PEWY-序列的谷氨酸,而半醌阴离子将其电子传递到血红素b(L),从而形成产物泛醌。与极限反应相比,该速率是快速的,并且需要使半醌接近血红素b(L)的运动以提高速率常数。 Q(i)-位上的受体反应仍是有争议的,但可能涉及双电子门机制来解释cyt b(150)现象,并从脉冲EPR研究中获得有关中间体结构的信息状态已审查。讨论的机制适用于单体bc(1)配合物。我们讨论文献中的证据,这些证据已被解释为表明二聚体结构参与了涉及跨二聚体界面的电子转移的更复杂的机制。我们从myothothiazol滴定和Tyr-199(位于单体之间的界面)的突变分析表明,在b(L)血红素水平上未检测到此类单体间电子转移。我们从对Asn-221处突变的菌株进行分析表明,单体中的b-hemes之间存在库仑相互作用。数据也可以解释为在二聚体界面上显示出相似的库仑相互作用,我们讨论了机理的含义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号